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Introduction

Introduction

Huge amounts of data, especially text, produced by social media

Field of particular interest in the context of social media and big data:
Politics (e.g., Brexit, 2016 presidential election in the US, Facebook
data scandal)

Tools of analysis for such data simultaneously provided by advances in
Natural Language Processing (NLP)

Topic analysis: analytical tool for discovery and exploration of latent
thematic clusters within text
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Introduction

Introduction

Key contributions of this project:

Construction of dataset containing Twitter posts by members of the
German Bundestag and a variety of metadata

Application of the Structural Topic Model (STM), introduced by
Roberts, Stewart, and Airoldi (2016), to German MPs’ Twitter
communication

Development of new tools for estimation of relationship between topic
proportions and metadata

Application of STM-specific train-test split to enable causal inference
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Topic Modeling: Motivation and Theory

Topic Modeling: Motivation and Theory
Motivation

Motivating example: excerpt from a scientific article (Blei, 2012a)

Question at hand: how to group words into topics?
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Topic Modeling: Motivation and Theory

Topic Modeling: Motivation and Theory
Notation and Terminology (I)

Words w : instances of a vocabulary of V unique terms

Documents d ∈ {1, . . . ,D}: sequences of words of length Nd ; wd ,n

denoting n-th word of document d

Corpus: collection (or set) of D documents

Topics k ∈ {1, . . . ,K}: latent thematic clusters within a text corpus;
(implicit) representation of a corpus

Topic-word distributions β: probability distributions over words; βk

denoting the word distribution corresponding to the k-th topic
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Topic Modeling: Motivation and Theory

Topic Modeling: Motivation and Theory
Notation and Terminology (II)

Topic assignments zd ,n: assignment of wd ,n to a specific topic
k ∈ {1, . . . ,K}; βd ,n representing the (assigned) word distribution for
wd ,n

Topic proportions θd : proportions of document d ’s words assigned to
each of the topics;

∑K
k=1 θd ,k = 1, for all d ∈ {1, . . . ,D}

Bag-of-word assumption: only words themselves meaningful, unlike
word order or grammar; equivalent to assuming exchangeability
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Topic Modeling: Motivation and Theory

Topic Modeling: Motivation and Theory
Latent Dirichlet Allocation (LDA) (I)

First topic model with entirely probabilistic generating process: LDA
(Blei, Ng, and Jordan, 2003)

Generative process for each document d ∈ {1, . . . ,D}:
1) Draw topic proportions θd ∼ DirK (α).
2) For each word n ∈ {1, . . . ,Nd}:

a) Draw a topic assignment zd,n ∼ MultinomialK (θd).
b) Draw a word wd,n ∼ MultinomialV (βd,n).

Graphical model representation of LDA (Blei, Ng, and Jordan, 2003):
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Topic Modeling: Motivation and Theory

Topic Modeling: Motivation and Theory
Latent Dirichlet Allocation (LDA) (II)

Illustration of topic assignment for the words of a document (Blei,
2012b):
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Topic Modeling: Motivation and Theory

Topic Modeling: Motivation and Theory
Structural Topic Model (STM)

Topic model that incorporates document-level metadata:

Topical prevalence covariates X = [x1| . . . |xD ]T ∈ RD×P

Categorical topical content variable Y ∈ RD with A levels, i.e.,
Yd ∈ {1, . . . ,A}, for all d ∈ {1, . . . ,D}

Generative process for each document d ∈ {1, . . . ,D}:
1) Draw ηd ∼ NK−1(ΓTxd

T ,Σ), with ηd,K = 0 for model identifiability.

2) Normalize ηd , for all k ∈ {1, . . . ,K} : θd,k =
exp(ηd,k )∑K
j=1 exp(ηd,j )

.

3) For each word n ∈ {1, . . . ,Nd}:
a) Draw topic assignment zd,n ∼ MultinomialK (θd).
b) If no topical content variable specified: wd,n ∼ MultinomialV (βd,n).

Otherwise, determine document-specific word distributions
Ba := [βa

1| . . . |βa
K ] based on Yd = a, for all topics k ∈ {1, . . . ,K};

select βd,n := Bazd,n; and draw word wd,n ∼ MultinomialV (βd,n).
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Topic Modeling: Motivation and Theory

Topic Modeling: Motivation and Theory
Graphical Model of the STM

Visualization of the generative process again through graphical model
(Roberts, Stewart, and Airoldi, 2016):
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Topic Modeling: Motivation and Theory

Topic Modeling: Motivation and Theory
Inference and Parameter Estimation in the STM

STM uses a mean-field variational EM algorithm (Roberts, Stewart, and
Airoldi, 2016):

E-step: update posterior distributions of latent variables θ and z
M-step: update model parameters Γ, Σ, and - if present - topical
content parameters
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Data

Data
Data Collection (I)

MP-level data: from www.bundestag.de/abgeordnete using
BeautifulSoup (Richardson, 2007) and a selenium web driver in
Python (Van Rossum and Drake Jr, 1995)

Twitter profiles: from official party homepages

Socioeconomic data and 2017 German federal election results: from
www.bundeswahlleiter.de
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Data

Data
Data Collection (II)

Tweets (and further Twitter features): via the official Twitter API
using Python’s tweepy library(Roesslein, 2020)

Monthly tweets (after dropping MPs without electoral district) for our
period of analysis, September 24, 2017 through April 24, 2020:
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In the following: grouping each MP’s tweets on a monthly basis
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Data

Data
Data Preprocessing

Preprocessing: in R (R Core Team, 2020), using the quanteda
package (Benoit et al., 2018)

Transcription of German umlauts (e.g. ä → a) and ligature (ß→ ss)

Removal of hyphens: relevant for compound words (e.g.,
Corona-Krise vs Coronakrise)

Transformation of text data into document-feature matrix (DFM);
conversion to lowercase; removal of stopwords, units (kg, uhr),
interjections (aaahhh, ufff ), etc.

Word stemming, i.e., cutting off word endings (e.g., politisch →
polit) (Lucas et al., 2015)
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Model Selection and Global Characteristics

Model Selection and Global Characteristics
Model Selection

Model evaluation metrics for hyperparameter K (number of topics):
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Model Selection and Global Characteristics

Model Selection and Global Characteristics
Labeling (I)

Three-step procedure for labeling
First step: top words for different weighting methodologies

Topic 1 Top Words:
Highest Prob: buerg, link, merkel, frau, sich
FREX: altpartei, islam, linksextremist, asylbewerb, linksextrem
Lift: eitan, 22jaehrig, abdelsamad, abgehalftert, afdforder
Score: altpartei, linksextremist, frauenkongress, islamist, boehring

Topic 3 Top Words:
Highest Prob: brauch, wichtig, leid, dank, klar
FREX: emissionshandel, soli, marktwirtschaft, feedback, co2steu
Lift: aequivalenz, altersvorsorgeprodukt, bildungsqualitaet, co2limit, co2meng
Score: emissionshandel, co2limit, basisrent, euet, technologieoff

Topic 4 Top Words:
Highest Prob: sozial, miet, kind, arbeit, brauch
FREX: mindestlohn, miet, wohnungsbau, mieterinn, loehn
Lift: auseinanderfaellt, baugipfel, bestandsmiet, billigflieg, binnennachfrag
Score: miet, mieterinn, mietendeckel, grundsicher, bezahlbar

Topic 6 Top Words:
Highest Prob: gruen, klimaschutz, brauch, klar, euro
FREX: fossil, erneuerbar, kohleausstieg, verkehrsminist, verkehrsw
Lift: abgasbetrug, abgebaggert, abschalteinricht, abschaltet, ammoniak
Score: erneuerbar, fossil, zdebel, verkehrsminist, klimaschutz
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Model Selection and Global Characteristics

Model Selection and Global Characteristics
Labeling (II)

Word cloud of Highest Prob top words (for topic 1):
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Model Selection and Global Characteristics
Labeling (III)

Second step: looking at documents (i.e., original tweets) with highest
proportion of topic 1
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Model Selection and Global Characteristics

Model Selection and Global Characteristics
Labeling (IV)

Third step: assigning labels

Topic 1 Right/Nationalist

Topic 2 Miscellaneous 1

Topic 3 Climate Economics

Topic 4 Social/Housing

Topic 5 Digital/Future

Topic 6 Climate Protection

Topic 7 Europe

Topic 8 Corona

Topic 9 Left/Anti-war

Topic 10 Twitter/Politics 1

Topic 11 Twitter/Politics 2

Topic 12 Miscellaneous 2

Topic 13 Twitter/Politics 3

Topic 14 Right-wing Extremism

Topic 15 Society/Solidarity
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Model Selection and Global Characteristics
Global Topic Proportions

Illustration of global topic proportions:
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Model Selection and Global Characteristics
Global Topic Correlations

Vocabulary overlap (left) and topic correlations (right):
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Covariate-level Topic Analysis

Covariate-level Topic Analysis
Overview

Explore estimated topical structure with respect to different
dimensions, e.g. membership in political party, time, . . .

Precisely: examine relationship between document-level prevalence
covariates xd and topic proportions θd

Natural idea: regress topic proportions on prevalence covariates

Problem: θd is latent variable and has to be estimated itself!

In following two approaches to address this problem:
1 Regression that takes into account uncertainty about θd : perform

sampling technique known as ”method of composition” in social
sciences

2 Direct assessment of STM output via logistic normal distribution with
estimated topical prevalence parameters Γ̂ and Σ̂
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Covariate-level Topic Analysis

Covariate-level Topic Analysis
Method of Composition

Let θ(k) := (θ1,k , . . . , θD,k)T ∈ [0, 1]D denote proportion of k-th topic
for all D documents

Method of Composition (Treier and Jackman, 2008):

Repeat m times:
1 Sample θ∗

(k) from (variational) posterior of θ(k) estimated by STM
2 Run regression model with response θ∗

(k) and covariates X to obtain

estimate ξ̂
∗

of regression coefficients ξ∗ and covariance of ξ̂
∗
, V̂

∗
ξ

3 Sample ξ̃
∗

from F (ξ̂
∗
, V̂

∗
ξ), where F is (asymptotic) distribution of ξ̂

∗

Idea: samples ξ̃
∗

take into account uncertainty in θ(k)

Additionally: uncertainty w.r.t. mean prediction (step 3)

Visualization of topic-metadata relationship: For observation xpred,

plot xpred vs. predicted response with xT
predξ̃

∗
as linear predictor
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Covariate-level Topic Analysis

Covariate-level Topic Analysis
Method of Composition: Problems

Several problems with method of composition:

1 In stm, regression model in step 2 is OLS; however OLS not
appropriate to model (sampled) proportions in open unit interval

2 Mixing of Bayesian and frequentist approach questionable:

From Bayesian perspective, ξ̃
∗

can only be considered sample from
posterior of ξ in certain Bayesian regression models with questionable
(uniform) prior assumptions

Using xT
predξ̃

∗
as linear predictor does not yield sample of posterior

predictive distribution

3 Separate modeling of topic proportions neglects dependence of
different topics among each other
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Covariate-level Topic Analysis

Covariate-level Topic Analysis

Problem 1: OLS Regression
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Covariate-level Topic Analysis

Covariate-level Topic Analysis
Method of Composition: Usage within R Package stm

Problem: OLS regression not suitable for (sampled) proportions,
which are restricted to interval (0,1)

Estimated relationship between proportions and prevalence covariates
might even involve negative proportions:
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Covariate-level Topic Analysis

Covariate-level Topic Analysis
Method of Composition: Extension of existing approach

Instead of OLS regression, we can use a beta regression or a
quasibinomial GLM (both with logit-link) to adequately model
proportions
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Covariate-level Topic Analysis

Problem 2: Mixing of Bayesian and Frequentist Approach

34 / 53



Covariate-level Topic Analysis

Covariate-level Topic Analysis
Mixing of Bayesian and Frequentist Approach

Regression within method of composition is frequentist regression

However, in STM ξ̃
∗

considered samples from (marginal, i.e.,
integrated over latent topic proportions) posterior of regression
coefficients; only true by assuming uniform priors for ξ

Caution: uncertainty from previous plots with respect to prediction of
mean ⇒ does not reflect variation of topic proportions in data!

Better idea: fully Bayesian approach with more realistic priors and
sampling from posterior predictive distribution to reflect variation of
data
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Covariate-level Topic Analysis
Fully Bayesian Approach: Idea

Idea: explicitly perform Bayesian regression in second step of each
iteration of method of composition

Modeling via beta regression (with normal priors centered around
zero) in order to model proportions in (0, 1)

Visualization: Sample proportions from posterior predictive
distribution at end of each step of method of composition (i.e.,
conditioning on previously sampled θ∗

(k)) with covariate values xpred
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Covariate-level Topic Analysis

Covariate-level Topic Analysis
Fully Bayesian Approach: Results

Predicted (empirical) mean mostly in line with results from previous
analysis

Uncertainty now w.r.t. variation of topic proportions in data

Observed variation for topic proportions corresponds well to variation
according to predictive posterior
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Covariate-level Topic Analysis

Problem 3: Univariate Modeling of Topic Proportions
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Covariate-level Topic Analysis

Covariate-level Topic Analysis
Approach to Multivariate Modeling of Proportions (I)

Remember, by assumption: θd ∼ LogisticNormal(ΓTxT
d ,Σ)

Logistic normal distribution assumes high dependence among
individual components ⇒ not fully taken into account in univariate
modeling via, e.g., the beta distribution

Inference within STM involves finding estimates Γ̂ and Σ̂ ⇒ Idea:
plug estimates into logistic normal distribution

For given covariate value xpred, obtain topic proportion as

θ∗
d ∼ LogisticNormal(Γ̂

T
xT
pred, Σ̂)
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Covariate-level Topic Analysis
Approach to Multivariate Modeling of Proportions (II)

Plugging in Γ̂ and Σ̂ is ”näıve” method: ideally sample prevalence
parameters from their posterior ⇒ would yield higher variation

However, not easily possible ⇒ should be addressed in future
implementations
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Causal Inference
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Causal Inference

Causal Inference
Correlation vs. Causality (I)

42 / 53



Causal Inference

Causal Inference
Correlation vs. Causality (II)

In previous section: assessment of relationship between metadata and
topic proportions

Framework to be used to explore topics with respect to different
dimensions

In particular, causal interpretation of results generally not justified
(”correlation vs. causality”)

When making causal inference, need to consider that topic
proportions are latent variables

Possible solution: conducting a train-test split
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Causal Inference

Causal Inference
Identification Problem and Overfitting

Setup: two groups (treatment and control), individuals otherwise
similar

Objective: quantifying treatment effect, in our case effect of
treatment on prevalence of specific topic.

Necessary assumption: response of an individual depending only on
their treatment

Identification problem: estimating topic model to discover latent topic
proportions can introduce additional dependency among individuals
⇒ response of each individual not only determined by treatment of
that individual!

Overfitting : fitted topic model might mistake noise for patterns in
some way ⇒ response again not solely determined by treatment of an
individual, but additionally by specific characteristics of other
individuals
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Causal Inference
Train-test split

Idea: splitting data D into training set Dtrain and test set Dtest

Training set Dtrain used to determine a model that infers latent topic
proportions from a given text

Test set Dtest used to assess relation between predicted test set topic
proportions and test set prevalence covariates

Identification problem solved: model used for prediction determined
by training set observations ⇒ treatment of test set observations not
dependent on other individuals’ treatment from test set.

Overfitting also solved: noise from training set very unlikely to be
replicated on test set
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Causal Inference
Results (I)
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Causal Inference
Results (II)

UN Climate Action Summit 2019 held on September 23, 2019

As observed, topic associated with climate issues much more
prevalent during that time than the year before

MAP estimates for different prior specifications on test set rather
similar, yet estimated effect for training data much larger

Similar results for effect of political party on topic labeled as
’Emancipation’: average difference of estimated topic proportions
between both parties larger for the training data

Additionally: credible intervals on the training data different from
those on the test data in both cases
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Causal Inference
Results (III)

Estimation of treatment effect: determining the average difference of
predicted topic proportions between both groups
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Treatment effect larger if ”näıvely” estimated solely on training data
in both cases!
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Discussion
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Discussion

Discussion
Summary

Creation of broad dataset including large-scale unstructured text and
variety of metadata ⇒ use in future (politological) analyses

Exemplification of topic analysis for German parliamentarians’ Twitter
communication

Critical discussion of existing tools and development of new
approaches regarding estimation of topic-metadata relationships

Detailed illustration of train-test framework for causal inference within
the STM
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Discussion

Discussion
Suggestions for Future Research

Holistic framework for estimation of topic-metadata relationships ⇒
investigation of effect size and especially importance, for instance
through fully Bayesian approach using MCMC

Identification of natural experiments for causal inference

Research into alternative model designs, beyond STM (and LDA)
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