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• Goal: discover latent semantic structures in a corpus & group 
documents into topical clusters

• Exploratory method that does not require prior knowledge
→ Unsupervised learning

• Often particularly useful in early phases of text analysis
• Getting a better feeling for the corpus at hand

• Facilitating/enhancing downstream tasks (e.g., sentiment analysis)
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Overview  Goal of Topic Modeling

as opposed to: topic classification



• So, what exactly is a topic?
• Topic modeling revolves around the probability of words occurring in texts 

of a specific cluster.

• Intuitively, we would expect some words to appear more frequently in 
documents about a certain topic than in others.

• Topics are semantic clusters that are characterized by the probability of 
occurrence of associated words and with which documents can be 
associated to an extent determined by the words contained.
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Overview  Terminology

e.g., the word tasty should be more likely to occur in a 
text about food than in one about stock markets



• Topic-word distribution 𝜷𝒌: probability distribution over vocabulary 
given topic k
• Constant across documents

• Characteristic of a topic

• Topic proportions: length-K vector of probabilities of a document 
belonging to a certain topic
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Approaches  Rough Taxonomy

Topic modeling approaches

Deterministic Probabilistic/generative

tf-idf (Salton & 
McGill, 1983)

Latent semantic 
analysis (LSA, 

Deerwester et al., 
1990)

Non-negative 
matrix factorization 

(NMF)

Probabilistic LSA 
(PLSA, Hofmann, 

1999) 

Latent Dirichlet 
allocation (LDA, 
Blei et al., 2003)

Correlated topic 
model (CTM, Blei et 

al., 2007)

Structural topic model (STM, 
Roberts et al., 2016)



• Deterministic approaches
• Term-by-document matrix 

• LSA, NMF: matrix factorization to identify latent topics

• Problems: inference & out-of-sample extension
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Approaches  Deterministic

V x D V x K K x D≈ x



• Probabilistic/generative approaches
• Hierarchical Bayesian mixture models

• Idea: reverse-engineer the imaginative process of document generation
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Approaches  Probabilistic/Generative

1. For each of document d within a corpus draw a vector of topic proportions 
from the assumed distribution

2. For each word position n within d
1. draw a topic assignment from the assumed distribution
2. draw a word from the assumed distribution



• Example
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Approaches  Probabilistic/Generative

writing
author

dog cat C-level
profit

corporate

topic 1 topic 2 topic 3

Document d position 1 position 1 position 1 position 1position 1

profit dog cat writing cat



• Hyperparameters: most importantly, number of topics

• Extreme brevity of Twitter data
• Problematic for most topic modeling approaches

• Potential mitigation by pooling

• Special models dedicated to short texts
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Overview  Challenges
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STM  Expert Talk

Expert Talk: STM

Patrick Schulze & Simon Wiegrebe: Twitter in the Parliament –
A Text-based Analysis of German Political Entities
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STM  Approach

Demo 7: STM
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STM  Exercise

Exercise 4: Topic Modeling
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• Situation
• (Statistical) topic modeling not always producing meaningful topics

• Quite some human input required still

• Also, unsupervised approach not always appropriate

• Idea: specify keywords & find related documents

• Approach
1. Specify list of keywords

2. Find similar words (both morphologically & semantically)

3. Assign all documents using these words to the associated topic
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Keyword-Based TE  Idea
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