Part I: Intro NLP & Task at Hand

Outline

- i. Intro NLP
- ii. Working Data
- iii. Task at Hand
- iv. Quanteda Universe

Part I: Intro NLP & Task at Hand

Intro NLP

Intro NLP What is NLP?

Natural Language Processing (NLP) is a theoretically motivated range of *computational techniques* for analyzing and representing *naturally occurring texts* at one or more *levels of linguistic analysis* for the purpose of achieving *human-like language processing* for a *range of tasks or applications* (Liddy, 2001).

Intro NLP Human-like Language Processing

- How to make human language comprehensible to machines?
 - Numerical **vector** representation
 - Characterization by **probabilities**

Intro NLP Naturally Occurring Texts

- Basically, any form of human communication
 - Written text
 - Speech
- Different types in different levels of formality
 - News articles
 - Customer reviews
 - Social media posts
 - ...
- Different languages

Intro NLP Levels of Linguistic Analysis

- **Morphological** how are words composed?
- Lexical what do single words mean?
- **Syntactic** what is the grammatical structure of a sentence?
- **Semantic** what meaning does a sentence convey?
- **Discourse** how do sentences interact to form a text?
- **Pragmatic** what is there between the lines?

Intro NLP Tasks

- High-level tasks
 - Speech recognition
 - Word-sense disambiguation (WSD)
 - Named entity recognition (NER)
 - Relationship extraction
 - Error identification and recovery
 - Automatic summarization
 - Machine translation
 - Topic extraction
 - Sentiment analysis

Intro NLP Tasks

- Low-level tasks
 - Sentence boundary detection
 - Tokenization
 - Part-of-speech (POS) tagging
 - Stemming
 - Lemmatization
 - Shallow parsing
 - ...

Intro NLP Computational Techniques

- Available techniques largely depending on the task to solve
 - Standard machine learning techniques for classification tasks → E.g., sentiment analysis
 - Generative models for unsupervised tasks
 → E.g., topic modeling
 - **Deep learning** models for various tasks \rightarrow E.g., translation with RNN
- State of the art: **transformer models** (BERT, GPT-3)
 - Idea: teach them as much as possible about the language as a whole (pre-training) and fine-tune to specific tasks

Intro NLP Challenges

- Variety of languages
 - Around 7,000 living tongues
 - Many low-resource languages
 - Large differences in grammatical structure, alphabet, scripting systems
- Irregularities
 - Synonyms
 - Homonyms
 - Genera
 - Cases

Intro NLP Challenges

- Contextual dependencies
 - Ambiguities
 - Domain-specific vocabulary
 - Varying formality
- Complex constructs
 - Humor
 - Irony
 - Sarcasm
 - Colloquialisms

- Individual expression
 - Style
 - Emotion
- Errors
 - Transcription/translation errors
 - Misspelling

Intro NLP Applications

Part I: Intro NLP & Task at Hand

Working Data

Working Data Generation

• All data generated by scraping the web

scraping is legal so long as it does not involve breaking security barriers explicitly in place to guard against such automatic data extraction

- Various sources:
 - <u>https://www.bundestag.de/abgeordnete</u>
 - Individual party websites
 - Twitter API

Working Data Structure

- Required information (on MP level)
 - Name
 - Party
 - Electoral district & associated meta data
 - Twitter username
 - Posted tweets
 - Date
 - Text
 - Number of likes, retweets
 - Number of followers

Philipp Amthor, CDU/CSU

Deutscher Bundestag

Platz der Republik 1

Andreas Scheuer 📀 @AndiScheuer · Oct 31, 2020 Die Welt schaut heute auf den #BER. Ein Flughafen, der uns lange bewegt hat. Ich hoffe, dass er jetzt schnell die #Herzen der Menschen gewinnt. So wie Tegel einen festen Platz in den Herzen der Berliner hatte. Und der Hauptstadtflughafen muss internationalens Drehkreuz werden.

Q 23	9	L :	53	\bigcirc	102	Υ,

Working Data Structure

Variable	Туре	Description
last_name	chr	MP's last name
first_name	chr	MP's first name
wahlkreis_name	chr	MP's electoral district
party	factor	MP's political party
bundesland	factor	Federal state of MP's electoral district
unemployment_rate	num	Unemployment rate in MP's electoral district during 2017 election
share_pop_migration	num	Share of migrant population in MP's electoral district during 2017 election
username	chr	MP's username on Twitter
followers_count	num	MP's number of followers on Twitter at scraping time
created_at	date	Time stamp of tweet creation
text	chr	Tweet text
favorite_count	num	Number of likes for tweet at scraping time
retweet_count	num	Number of retweets for tweet at scraping time

Working Data Example

"Merkel-Regierung geht vor Erdogan in die Knie. Auf meine Frage, ob nach Auffassung der Bundesregierung die Ermordung der Armenier 1915/16 ein "Völkermord" war, eiert sie nur rum. Ihr sei die Position des Bundestages dazu "bekannt". Sie selbst hat dazu keine. #erbärmlich #feige https://t.co/bkwSflCJan"

Working Data Particularities

- Twitter idiosyncrasies
 - Extremely short texts
 - Often in response to recent event without explicitly naming it
 - Informal language with tendency to containing spelling mistakes
 - Special tokens: emojis, hashtags
- Political context
 - Specific vocabulary
 - Sometimes rather formal after all (and few emojis)
 - Many solely informative tweets
 - Tendency toward negative sentiment

Part I: Intro NLP & Task at Hand

Task at Hand

Task Analytical Objective

Task Topic Extraction

- **Topic extraction** aka **topic modeling**: finding latent thematic clusters within a collection of texts
- Goal: assign each document a topic probability vector / topic label
- Used for
 - Information retrieval
 - Clustering
 - Supporting upstream tasks

for instance, sentiment analysis

• Unsupervised task: both topics and their number unknown

Task Sentiment Analysis

- Sentiment analysis: identifying and analyzing affective states
- Relevant subtask: polarity detection
- **Goal**: assign each document a polarity label ∈ {positive, negative}
- Used for
 - Customer relationship management
 - Social media analysis

alternative, rule-based approaches exist

• Supervised task: requiring labeled training data (typically)

Task Topic-Specific Sentiment Analysis

• Idea: domain- / topic-dependence of sentiment predictors

e.g., "Sozialleistungen" possibly positively connotated in social security context but negatively connotated in asylum politics

- \rightarrow Combine topic extraction (1) and sentiment analysis (2)
- Implementation
 - **R**: word embeddings per topic
 - **BERT**: aspect-based sentiment analysis

underlying assumption: one aspect per document

ML Pipeline Analytical Sequence (R)

Scraping Labeling	Data cleaning	Extraction of Twitter tokens	s
Extraction of lexica	l features	Extraction of dictionary features	
Extraction of un	igrams	Extraction of POS tags	
Sentiment analysis	Word embed	Idings Topic modeling	
	L	Ý	J

Dynamic features

ML Pipeline Static vs Dynamic Features

 Fundamental principle in machine learning: dichotomy between training and test sphere
 → Avoid bias in performance estimation

- Static features
 - Solely determined on single-observation level
 - E.g., POS tags
- Dynamic features
 - Affected by surrounding observations
 - E.g., topic labels

may be computed before training

must be computed during training

ML Pipeline Static vs Dynamic Features

Part I: Intro NLP & Task at Hand

Quanteda Universe

Quanteda Universe Package

- Benoit et al. (2018)
- Convenient text handling in R
 - Designated classes for textual data (with easy conversion to and from data.frame & friends)
 - User-friendly syntax
 - Fast computation
 - Compatibility with spacyr package (Benoit et al., 2020)
 - → Wrapper for Python's popular spaCy package used for, i.a., **POS tagging**

tutorials for getting started on https://tutorials.quanteda.io/

[Word = smallest entity of text \rightarrow words] [Sentence = sequence of w words \rightarrow sentences] [Paragraph = sequence of s sentences \rightarrow not relevant] [Document = sequence of p paragraphs \rightarrow tweets]

• corpus

- Most basic class to handle text data
- Collection of documents + document-level variables \rightarrow tweets + meta data

lower-level corpora, e.g., as collections of paragraphs, also possible

tokens

- Representing documents as a collection of tokens
 → tokens per tweet + meta data
- Token: sequence of characters grouped together as a useful semantic unit
 → Single words, n-grams, ...
- During tokenization, we will often
 - Remove punctuation
 - Remove stopwords
 - Omit cases (e.g., lowercase everything)
 - Perform stemming / lemmatization

text normalization – to be continued

• Goal: representation of texts by tokens that co-occur across documents

doc_id	text	author	nationality
1 2 3	Politics have no relation to morals. Politics is too serious a matter to be left to the politicians. In politics stupidity is not a handicap.	Niccolo Machiavelli Charles de Gaulle Napoleon Bonaparte	Italian French French
	Corpus consisting of 3 documents and 2 docvars. 1: "Politics have no relation to morals." 2: "Politics is too serious a matter to be left to the politicia" 3: "In politics stupidity is not a handicap."		
	Tokens consisting of 3 documents and 2 docvars. 1: [1] "Politics" "relation" "morals" 2: [1] "Politics" "serious" "matter" "le 3: [1] "politics" "stupidity" "handicap"	eft" "politicians"	

• dfm

- Document-feature matrix
- Token count per document → word occurrence per tweet + meta data
- Methods
 - Weighting schemes, such as tf-idf
 - Counting **matches** with a list of words
 - Extracting **top** features
 - Performing dictionary look-ups

_			· · ·			-	150 301	×	N 1
Docur	nent-feati	ire matrix	x of: 3	documen	ts, 9 fe	eatures	s (59.3% spa	arse) and 2	2 docvars.
1	features						•		
docs	politics	relation	morals	serious	matter	left p	politicians	stupidity	handicap
1	1	1	1	0	0	0	0	0	0
2	1	0	0	1	1	1	1	0	0
3	1	0	0	0	0	0	0	1	1

• fcm

- Feature co-occurrence matrix
- Tokens co-occurrence count across corpus → co-occurrence across tweets

Feature co-occurrence matrix of: 9 by 9 features.									
t	features		-						
features	politics	relation	morals	serious	matter	left	politicians	stupidity	handicap
politics	0	1	1	1	1	1	· 1	1	1
relation	0	0	1	0	0	0	0	0	0
morals	0	0	0	0	0	0	0	0	0
serious	0	0	0	0	1	1	1	0	0
matter	0	0	0	0	0	1	1	0	0
left	0	0	0	0	0	0	1	0	0
politicians	0	0	0	0	0	0	0	0	0
stupidity	0	0	0	0	0	0	0	0	1
handicap	0	0	0	0	0	0	0	0	0

dictionary

- Essentially, named list
- Specifying dimensions with associated items
- Look-up on document level → dictionary item count per tweet

Di	ictionary object with 2 key entries
-	[political]:
	- politics, politicians
-	[critical]:
	- morals, stupidity, handicap

Quanteda Universe Scope

• Purpose of quanteda: handling text corpora and performing basic analysis of their components

• Within scope

- Organizing text documents
- Tokenization
- Descriptive analyses

• Out of scope

• Higher-level text analysis, such as topic modeling or sentiment analysis

pre-processing with quanteda

downstream analyses with other tools

Part I: Intro NLP & Task at Hand

Literature and References

Eisenstein, J. (2019): Introduction to Natural Language Processing, MIT Press.

Liddy, E.D. (2001): Natural Language Processing, *in*: Encyclopedia of Library and Information Science, 2nd ed., NY. Marcel Decker, Inc.

Nadkarni, P. M., Ohno-Machado, L., and Chapman W. (2011): Natural Language Processing: An Introduction. *Journal of the American Medical Informatics Association 18(5)*, 544–551, https://doi.org/10.1136/amiajnl-2011-000464.

Vayansky, I., and Kumar S.A.P. (2020): A Review of Ttopic Modeling Methods. *Information Systems*, doi: https://doi.org/10.1016/j.is.2020.101582.

Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., and Matsuo, A. (2018): quanteda: An R package for the Quantitative Analysis of Textual Data. *Journal of Open Source Software 3(30)*, 774, https://doi.org/10.21105/joss.00774.