
Ludwig-Maximilians-Universität München

Department of Statistics

Statistical Consulting Project (MSc Statistics)

Twitter in the Parliament - A Text-based

Analysis of German Political Entities

Patrick Schulze, Simon Wiegrebe

Project partners: Prof. Dr. Paul W. Thurner, Sandra Wankmüller

(Geschwister Scholl Institute of Political Science, LMU)

Supervisors: Prof. Dr. Christian Heumann, Matthias Aÿenmacher

Abstract

The analysis of large-scale unstructured data is gaining importance at both a profes-

sional and academic level, certainly helped by the omnipresence of social media and

novel statistical analysis tools. For instance, topic models seek to discover latent the-

matic clusters within text data. Social scientists increasingly move beyond a merely

explorative use of such topic models, focusing on relationship estimation and causal

inference. Oftentimes, however, the statistical subtleties resulting from the latency of

topics are not well understood or insu�ciently addressed. We construct a dataset con-

taining German parliamentarians' Twitter posts as well as a variety of document meta-

data and explore it by means of the Structural Topic Model (STM). Subsequently, we

address the relationship between topic proportions and metadata, providing enhanced

analytical tools with improved statistical properties and applying a train-test framework

to facilitate causal inference.

Munich, July 16, 2020



Contents

1 Introduction 2

2 Theoretical Framework 4

2.1 Topic Modeling - Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The Structural Topic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Inference and Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . 12

3 Data 13

3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Model Selection and Global Characteristics 17

4.1 Hyperparameter Search and Model Fitting . . . . . . . . . . . . . . . . . . . 17

4.2 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Global-level Topic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Metadata Analysis - Topical Prevalence and Content 25

5.1 Topical Prevalence: Method of Composition and Direct Assessment . . . . . 25

5.1.1 Problem 1: Implementation via OLS in the stm package . . . . . . . 28

5.1.2 Problem 2: Mixing of Bayesian and Frequentist Approach . . . . . . 31

5.1.3 Problem 3: Univariate Modeling of Topic Proportions . . . . . . . . . 33

5.2 Topical Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Double Usage of Metadata and Causal Inference 36

6.1 A Clean Two-step Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Causal Inference: Train-test Split . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.1 Model Estimation on the Training Set . . . . . . . . . . . . . . . . . 41

6.2.2 Prediction of Topic Proportions on the Test Set . . . . . . . . . . . . 41

6.2.3 Estimation of the Average Treatment E�ect . . . . . . . . . . . . . . 42

6.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Conclusion 45

8 Appendix 47

1



1 Introduction

The rise in popularity of social media has changed various aspects of private, public, and

professional life over the last two decades. From a data-analytical point of view, this has led

to an unprecedented increase in the supply of publicly available unstructured (text) data,

ready to be analyzed. In fact, unstructured data makes up the lion's share of what is called

big data (Gandomi and Haider, 2015). At the same time, advances in the �eld of machine

learning, particularly in Natural Language Processing (NLP), have created numerous new

opportunities for the analysis of such large-scale unstructured texts.

A �eld which has been particularly impacted by the use of social media (and the infor-

mation extracted from it) is politics. At least since the 2016 Brexit vote and US presidential

election, politicians have come to recognize not only that social media presence is ever more

important, but also how strong a message their social media behavior can transmit. Among

social media networks, Twitter is of particular importance since it allows for direct commu-

nication between politicians and voters - and even more so after the Facebook-Cambridge

Analytica data breach in 2018. As a consequence, there has been increasing academic interest

in text-based (intra- and inter-)party politics (e.g., Ceron, 2017; Daniel et al., 2019; Grim-

mer, 2010; Quinlan et al., 2018). Moreover, unstructured text and the insights generated

from it can subsequently be used as input for a broad variety of tasks, ranging from election

forecasts (e.g., Burnap et al., 2016; Jungherr, 2016; Tumasjan et al., 2010) to prediction of

stock market movements (e.g., Nisar and Yeung, 2018).

A key challenge in analyzing large amounts of unstructured text is to reduce dimension-

ality and classify pieces of text: either into previously determined categories (for instance,

sentiments), which corresponds to a supervised learning problem; or by trying to discover

latent thematic clusters that govern the content of the documents, which is now an instance

of unsupervised learning (since the number and labeling of clusters is to be determined). In

this paper, we use a mixture of both strategies - an unsupervised topic model followed by

supervised regression analysis - and apply it to German politics. In doing so, our focus lies

on statistical and methodological aspects of topic models, particularly on the relationship

between topics and metadata, instead of speci�c (politological) hypothesis testing. We make

four key contributions: �rst, we construct an extensive dataset which contains text data

consisting of Twitter posts by German Members of Parliament (MPs) as well as a plenitude

of personal data on an MP-level, socioeconomic and election data on an electoral-district

level, and additional Twitter features; this dataset is then used in subsequent analysis but

also provides a starting point for future research, particularly in political science. Second,

we �t a Structural Topic Model (STM) (Roberts et al., 2016) to our data to discover and

describe latent topics within German parliamentarians' Twitter communication. Third, we

critically discuss existing approaches to estimating topic-metadata relationships and develop
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new tools to improve model speci�cation and account for uncertainty caused by topic interde-

pendence. And fourth, we apply a train-test-split methodology to prevent over�tting, avoid

the introduction of an identi�cation problem, and enable causal inference for document-level

features.

We �nd that for most model speci�cations the majority of topics carry meaning, which

can be regarded as a form of retrospective model validation. The fact that these topics are

converted from mere word clusters into actually meaningful thematic clusters through man-

ual labeling underlines the importance of human judgment in statistical topic modeling; this

is in line with Chang et al. (2009), who show that solely focusing on quantitative metrics

such as held-out likelihood does not guarantee meaningfulness of the latent space. As for

document-level metadata, we discover some relevant associations between topic proportions

and document features - particularly for the political parties, these relationships are in line

with expectation. For continuous covariates, such as unemployment and GDP, we observe

tendencies that are consistent across all modeling methodologies used - however, the high de-

gree of uncertainty induced by the underlying generative process of the STM and its Bayesian

nature strongly outweighs these tendencies. The inclusion of a covariate to further model

topical content (beyond its e�ect on topical prevalence) is found to reduce the meaningful-

ness of the latent space; furthermore, no natural candidate for the topical content variable

exists in our case. Finally, we observe that (prevalence) covariate information and document

information itself are used twice, for both model �tting and e�ect estimation. In our case,

the double usage of document-level metadata does have an impact on the estimated rela-

tionships, but the overall tendencies remain mostly unchanged. On the other hand, double

usage of documents themselves induces a substantial degree of over�tting and an identi�ca-

tion problem, which can be avoided by performing a train-test split; the resulting e�ects, in

turn, are smaller but potentially allow for causal interpretation.

The remainder of this paper is organized as follows. Section 2 provides the theoretical

foundation of topic modeling, in particular the "component models" of the STM which we

use for the major part of our analysis, as well as a brief discussion of inference and parameter

estimation. Section 3 describes the data collection process, the data itself, and the data pre-

processing necessary for topic modeling. Section 4 discusses model selection, labeling as well

as global characteristics of the latent space. In section 5, we include document-level meta-

data into the analysis, discussing the corresponding theory, methodological improvements,

and results. Section 6 deals with alternative modeling approaches and strategies for causal

inference. Finally, section 7 concludes.

3



2 Theoretical Framework

2.1 Topic Modeling - Overview

Topic models seek to discover latent thematic clusters, called topics, within a collection of

discrete data, usually text; therefore, topic modeling can be regarded as dimensionality re-

duction technique. Furthermore, since both the number and content of topics is unknown

beforehand (and can never be truly veri�ed), topic modeling is an instance of unsupervised

learning. Information retrieval (IR) research generally proposes the reduction of text doc-

uments to vectors of real numbers, each number representing (modi�ed) counts of terms.

An instance of this proposed methodology is the tf-idf scheme by Salton and McGill (1983),

which for a collection of documents returns a term-by-document matrix where each row corre-

sponds to a document in the corpus and the columns contain the respective tf-idf term count.

Since only words in a vocabulary of �xed length V are considered, documents of unrestricted

length are being reduced to vectors of a �xed length V . To further reduce dimensionality,

the latent semantic indexing (LSI) by Deerwester et al. (1990) applied singular value decom-

position (SVD) to the tf-idf document-term matrix. However, as Blei et al. (2003) argue,

the idea should be to develop a generative probabilistic model of text, in order to estimate

to which extent the LSI methodology can align data with the generative text model; yet,

given such a model, Bayesian methods or maximum likelihood estimation (MLE) would be

much more direct, which is why the bene�ts of applying the LSI are not obvious. Picking

up this shortcoming of LSI, Hofmann (1999) introduced the probabilistic LSI (pLSI) model.

This generative data model allows for individual words to be sampled from a mixture model:

they are drawn from a multinomial distribution, with latent random variables determining

the mixture proportions, which in turn can be viewed as topics. However, the pLSI can only

be regarded as partly probabilistic text model, since the mixing components themselves are

�xed on a document level, thus lacking a probabilistic generating process.

In their Latent Dirichlet Allocation (LDA) model, Blei et al. (2003) included the gener-

ation of topic proportions into the generative probabilistic model, the resulting three-level

hierarchical Bayesian mixture model marking the starting point of modern topic modeling.

In order to present the main idea of LDA, we �rst introduce some notation and terminology

that we will use throughout the remainder of this paper.

� A word w is the smallest unit of discrete text data. Words are instances of a vocabulary

of V unique terms and can thus be indexed by v ∈ {1, . . . , V }. Mathematically, the

v-th term in the vocabulary can be represented as a vector of length V , whose v-th

component equals one, with all other components equalling zero. We will sometimes

refer to the v-th term of the vocabulary simply as v. Words, along with document-level

metadata, represent the actually observable data.

� A document d ∈ {1, . . . , D} is a sequence of words of length Nd. For a given document
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d, we denote its words by wd := (wd,1, . . . , wd,Nd
). Consequently, the n-th word of

document d is denoted by wd,n.
� A corpus is a collection (or set) of D documents. Therefore, d ∈ {1, . . . , D} means that

our corpus contains D documents.
� A topic is a latent thematic cluster within a text corpus. The implicit assumption of

the existence of topical clusters is that any collection of documents can actually be

decomposed into K such topics, where the number of topics K is an (unknown) hyper-

parameter which needs to be determined ex ante (see section 4.1 for hyperparameter

determination in our speci�c use case). We will refer to topics simply by the actual

topic index (or topic number) k ∈ {1, . . . , K}.
� A topic-word distribution β is a probability distribution over words, i.e., over the vocab-

ulary. For a model containing K topics (and no topical content variable, see section 2.2

below), topic-word distributions do not vary across documents and uniquely character-

ize a topic: we denote the word distribution corresponding to the k-th topic by βk and

the matrix whose k-th column is topic βk by B := β1:K = [β1| . . . |βK ]. Each vector βk

thus has length V , while B is a V ×K-matrix. Therefore, k refers to the latent thematic

cluster with topic index k in general, and βk refers to the underlying word distribution

in particular.
� A topic assignment zd,n is the assignment of the n-th word of document d to a speci�c

topic k ∈ {1, . . . , K} (i.e., to the corresponding word distribution βk). Therefore, zd,n

is simply a vector of length K whose k-th entry equals one and all other entries equal

zero. This allows us to represent the word distribution corresponding to the n-th word

in document d as β(d, n) := Bzd,n (again, for a model without topical content variable).

Stated di�erently, this means that topic assignment zd,n simply picks the k-th column

of matrix B - that is, βk - and assigns word wd,n to it.
� For a given document d, the corresponding topic proportions, denoted by θd, are the

proportions of the document's words assigned to each of the topics k ∈ {1, . . . , K}.
Topic proportions vary across documents. Since for each document d the proportions

of all K topics must add up to one (
∑K

k=1 θd,k = 1, for all d ∈ {1, . . . , D}), topic
proportions represent probabilities.

� The bag-of-word assumption is an assumption used in all (probabilistic) text models

referenced in this paper, including LSI and pLSI, and states that only words themselves

(and their counts) carry meaning, while word order or grammar do not. Statistically,

this is equivalent to assuming that words within a document are exchangeable (Aldous,

1985).

As mentioned above, LDA is the �rst generative probabilistic model of an entire text corpus.

(Recall that pLSI is only probabilisitic for a �xed document.) Now, the generative process

underlying LDA can be described as a two-step procedure, where for each document d ∈
{1, . . . , D}:
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1) Draw topic proportions θd ∼ DirK(α).

2) For each word n ∈ {1, . . . , Nd}:

a) Draw a topic assignment zd,n ∼ MultinomialK(θd).

b) Draw a word wd,n ∼ MultinomialV (β(d, n)).

Thus, topic proportions are drawn from a Dirichlet distribution with K-dimensional hyper-

parameter vector α, αk > 0 for all k, which is estimated from the data. K, representing

the number of topics, is another hyperparameter and must be set by the user; the α-vector

is estimated from the data. This means that for each document d ∈ {1, . . . , D}, the corre-
sponding topic proportions θd represent a K-dimensional vector which can take on values on

the (K − 1)-simplex, i.e., θd,k ≥ 0,
∑K

k=1 θd,k = 1. Also note that the Dirichlet distribution

is the conjugate prior of the multinomial distribution, which greatly facilitates estimation

(see section 2.3 on variational inference below). Put simply, for each document LDA �rst

generates topic proportions, which are then used as weights for topic assignment. A word

is then drawn from the topic-speci�c word distribution, which is determined by the topic

assignment. These topic-speci�c word distributions βk need to be estimated from the data.

Note that LDA is a very simple, restrictive model in (at least) three ways:

(i) By using the Dirichlet distribution to generate topic proportions, potential correlations

between topics cannot be captured due to the neutrality of the Dirichlet distribution.1

As a consequence, the occurrence of one topic within a document is not correlated with

the occurrence of another topic (Blei et al., 2007). This is a restrictive simpli�cation, as

topics such as "sports" and "health" are much more likely to co-occur within a document

than, say, "sports" and "war".

(ii) Second, while topic proportions vary stochastically across documents, they do so given

a single, global hyperparameter vector α; recalling the bag-of-words assumption, this

implies that topic proportions are generated based merely on word counts (occurrences

and co-occurrences), while additional document-level information is not taken into ac-

count. This is another unrealistic and limiting simpli�cation, since researchers usually

possess further document-speci�c information indicative of the topics addressed within

the individual documents.

(iii) Third, by construction, the topic-speci�c word distributions βk are assumed to be identi-

cal for all documents. Similarly to the second restriction, this prevents researchers from

1Due to the constraint
∑K

k=1 θk = 1, there is clearly some degree of dependence between topic proportions.
However, the dependence is minimal, as the Dirichlet distribution is characterized by complete neutrality:
the components θ1/(1 − S0), θ2/(1 − S1), . . . , θK(1 − SK−1) are mutually independent, where S0 := 0 and

Sk =
∑k

i=1 θk, k ∈ {1, . . . ,K}. Stated di�erently, for each component θk, k ∈ {1, . . . ,K}, it holds that
θk/(1−Sk−1) is independent of the vector constructed by weighting all remaining components by their total
proportion (James et al., 1980).
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using (document-level) information which might potentially in�uence the weighting of

speci�c words within a topic.

Due to its simplicity and the resulting restrictions, the LDA has been used used as a building

block for more advanced (and usually more speci�ed) generative topic models. One model

that builds on LDA, addressing some of its shortcomings, is the Correlated Topic Model

(CTM) by Blei et al. (2007). Speci�cally, the CTM addresses the �rst one of the above-

mentioned restrictions: the inability to cope with inter-topic correlations. The model no

longer uses a Dirichlet distribution to sample topic proportions; instead, a logistic normal

distribution is employed, which can capture correlations between topics due to the incorpo-

rated covariance structure between its components (Atchison and Shen, 1980). The resulting

generative process for the CTM can be stated as follows:

For each document d ∈ {1, . . . , D}:

1) Draw unnormalized topic proportions ηd ∼ NK−1(µ,Σ), with ηd,K := 0 for model

identi�ability.

2) Normalize ηd by mapping it to the simplex: θd,k =
exp(ηd,k)∑K
j=1 exp(ηd,j)

, for all k ∈ {1, . . . , K}.

3) For each word n ∈ {1, . . . , Nd}:

a) Draw a topic assignment zd,n ∼ MultinomialK(θd).

b) Draw a word wd,n ∼ MultinomialV (β(d, n)).

The �rst two steps constitute the sampling from a logistic normal distribution: aK-dimensional

vector ηd is drawn from a multivariate normal distribution and subsequently transformed to

a vector of proportions (or probabilities) by applying the softmax function to each of its

elements. The number of topics K is again a hyperparameter which must be determined ex

ante. Analogously to LDA, the parameters of the normal distribution in step 1, µ ∈ RK−1

and Σ ∈ R(K−1)×(K−1), as well as the topic-speci�c word distributions βk need to be esti-

mated from the data. As mentioned above, this process now allows for inter-topic correlation.

Yet this comes at a cost: unlike the Dirichlet distribution, the logistic normal distribution is

no longer conjugate to the multinomial distribution. As explained in more detail in section

2.3 below, this renders standard variational inference algorithms inapplicable, since these

rely on conjugacy and the implied closed-form solutions. However, using the Laplace varia-

tional inference developed by Wang and Blei (2013), which is a generic method for variational

inference when dealing with nonconjugate models, solves the inference problem for the CTM.

As for the inability to incorporate covariate information into the determination of topic

proportions, Mimno et al. (2011) were the �rst to model topic proportions as a function

of observable document-level metadata. Speci�cally, their Dirichlet-Multinomial Regression

(DMR) model still samples topic proportions θd from a Dirichlet distribution (thus, not
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allowing for inter-topic correlations), yet unlike in LDA, the Dirichlet prior αd is no longer

global but topic-speci�c. This topic prior αd, in turn, is log-linear in the document-level

features xd and the (topic-speci�c) priors for the coe�cients of these features, λt, have a

normal prior. With coe�cients being updated through numerical optimization as part of the

Expectation-Maximization (EM) algorithm used for training, the DMR model thus actively

uses document features to model topic proportions.

Finally, the third restictiveness of LDA, the in�exibility of topic-word distributions βk

when document-level metadata is available, is addressed by Eisenstein et al. (2011) in their

Sparse Additive General model (SAGE). The authors propose to start o� with a background

word distribution m containing log frequencies and to model additive deviations from this

baseline for each class. The idea behind SAGE can be used to model di�erences in topic-word

distributions according to the category of some document-level covariate.

Based on the foundational LDA as well as its extensions, Roberts et al. (2016) developed

the Structural Topic Model (STM), which combines the improvements over the original LDA

discussed in this section. Due to its �exibility regarding the incorporation of document-level

information, we choose the STM for our speci�c use case, a text-based analysis of German

political entities. Therefore, we discuss the model in greater detail in section 2.2 below.

2.2 The Structural Topic Model

Overview

The STM addresses the three main shortcomings of the LDA discussed in the previous

section. In this subsection, we explain the corresponding modi�cations with respect to LDA

and present the generative process of the STM.

(i) To allow for correlation among topics, the STM uses a logistic normal distribution to

sample topic proportions. In fact, if no document-level metadata is fed into the STM,

it simply reduces to the CTM.

(ii) The STM allows for the incorporation and use of document-level metadata when de-

termining topic proportions. Similar to the DMR, topic proportions (θ1, . . . ,θD)T are

assumed to depend on P document-level topical prevalence variables (such as the au-

thor's name, her political party, or her popularity on Twitter), yet now with each θd

following a multivariate logistic normal distribution. The distribution now has median2

vector ΓTxTd ; X = [x1| . . . |xD]T ∈ RD×P is a matrix containing D document-level

prevalence covariate vectors xd, each one containing P document-level covariate values;

Γ = [γ1| . . . |γK ] is a matrix with each of its K columns γk being a P -dimensional vector

of topic proportion coe�cients for the respective topic k. Furthermore, Σ is a matrix

2There is no analytical closed form for the mean in the logistic normal distribution.
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of parameters determining the covariance structure of the distribution (for details see

further below). This way, the model accounts for the fact that document-level covariates

might in�uence how much (that is, which percentage of the total number of words) the

corresponding documents attribute to the di�erent topics.

(iii) Within the STM, document-level covariate information can also be used to �ne-tune

topic-word distributions βk, the methodology being similar to the one in the SAGE

model. In particular, the STM allows for specifying a single categorical document-

level topical content variable Y ∈ RD with A levels, i.e., Yd ∈ {1, . . . , A}, for all d ∈
{1, . . . , D}.3 Consequently, each topic k ∈ {1, . . . , K} is now associated with a total of

A topic-word distributions βak , a ∈ {1, . . . , A}, instead of a single one, βk. For a given

document d, this means the K topic-word distributions are now additionally determined

by the level a assumed by Yd and are identical across all documents with Yd = a, given

a topic k ∈ {1, . . . , K} (Roberts et al., 2016). This way, for a given document d,

document-level metadata can not only impact the weighting of topics θd, but also the

weighting over words for each topic. Note that for a given topic k, the word distributions

βak do not vary substantially across di�erent values of a; that is, the content variable Y

is really an A-level re�nement of βk and does not a�ect the number of topics K.

The generative process of the STM can be stated as follows (Roberts et al., 2016):

For each document d ∈ {1, . . . , D}:

1) Draw unnormalized topic proportions ηd ∼ NK−1(ΓTxTd ,Σ), with ηd,K set to zero for

model identi�ability.

2) Normalize ηd by mapping it to the simplex: θd,k =
exp(ηd,k)∑K
j=1 exp(ηd,j)

, for all k ∈ {1, . . . , K}.

3) For each word n ∈ {1, . . . , Nd}:

a) Draw a topic assignment zd,n ∼ MultinomialK(θd).

b) If no topical content variable has been speci�ed, simply draw a word wd,n ∼
MultinomialV (β(d, n)). Otherwise, �rst determine the document-speci�c word dis-

tributions Ba := [βa1 | . . . |βaK ] based on the level a taken on by Yd, for all topics

k ∈ {1, . . . , K}; next, analogously de�ne β(d, n) := Bazd,n; �nally, draw a word

wd,n ∼ MultinomialV (β(d, n)).

This means that unnormalized topic proportions are sampled from a normal distribution

with mean Γ = [γ1| . . . |γK ] and covariance Σ. The coe�cients contained in the matrix Γ,

3In theory, multiple topical content variables could be included, yet the R package stm (Roberts et al.,
2019) only allows for specifying a single content variable due to computational complexity. Furthermore, Yd is
dummy encoded in the model implementation, making Yd a vector of length A and Y a matrix of dimension
D × A. However, for notational convenience we simply refer to Yd as a scalar and to Y as a D-dimensional
vector here.
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which correspond to the prevalence covariates X, are obtained through a Bayesian linear

regression with prior distributions γk ∼ Np(0, σ2
kIp) (see Roberts et al., 2016 for further

details). However, we actually specify an L1 penalty instead of this prior to ensure model

convergence. The softmax function is then applied to unnormalized topic proportions ηd,

yielding normalized topic proportions θd, which in turn are used as weights for the subsequent

topic assignment zd,n. Finally, each word is sampled from the corresponding multinomial

word probability distribution (over the vocabulary of length V ), which depends on topic

assignment zd,n and, for models containing a topical content variable, on its level a. In line

with SAGE methodology, the topic-word distributions are modelled as deviations in log-

frequency from a baseline vocabulary. (See Roberts et al., 2016, p. 991 for more details.) As

in the CTM, K (and σ2
k if no L1 penalty is speci�ed) is a hyperparameter to be chosen by the

user. The graphical model representation in Figure 1 below visualizes the generative process

described.

Figure 1: Graphical model representation of the STM (from Roberts et al.

(2016), p. 990).

Scope

Topic models are unsupervised learning methods, since the true topics from which the text

was generated are not known. They have been traditionally used as an exploratory tool pro-

viding a concise summary of topics and ideally inducing a good decomposition of the corpus.

Topic models have also been applied to tasks such as collaborative �ltering and classi�cation

(see, e.g., Blei et al., 2003). In particular, they can be employed as dimensionality reduction

method in semi-supervised learning methods. Such a process can in general be described as

a two-stage approach, where in the �rst stage topic proportions and content are learned and

in the second stage a supervised method such as regression takes this learned representation

as input.

The fundamental idea of the STM is to directly incorporate metadata information in order

10



to discover the topical structure. As with other topic models, the structure learned can then

be used to conduct further analysis, such as regression modeling. Since the topic proportions

are latent random variables, it is preferable to incorporate the uncertainty of topic proportions

θd, accessible through the estimated approximation of their posterior, when determining the

e�ect of covariates on topic proportions. This is achieved by what is called the "method of

composition" in social sciences. In section 5 we provide a detailed discussion of this method.

Though not mentioned by the authors of the STM, it is furthermore possible to directly

assess the output of an estimated STM that re�ects the association of metadata with topics.

By doing so, no second step is performed in order to investigate the topic-metadata rela-

tionship. In section 5.1.3 we show how the results of such an analysis di�er from the results

obtained by a two-stage approach.

The incorporation of metadata in the STM also proves useful if the objective is to examine

causality, thus moving beyond mere relationships between metadata and topics. In line with

Egami et al. (2018), we address this issue in section 6.2, where we split our data into a

training and a test set. We show that the design of the STM allows metadata covariates

from the training set to directly help predict topic proportions on the test set.

Posterior Distribution

Before addressing inference and parameter estimation within the STM in section 2.3 below,

we brie�y derive the posterior distribution of the STM (up to proportionality), as stated on

p. 992 of Roberts et al. (2016). Recall that only words W ,4 prevalence covariates X, and

the content covariate Y are observable, while unnormalized topic proportions η and topic

assignments z are latent and topic-word distribution deviations κ, prevalence coe�cients Γ,

and unnormalized topic proportion variance Σ are parameters to be estimated. The posterior

is then given by

p(η, z,κ,Γ,Σ|W ,X,Y ) ∝ p(W |η, z,κ,Γ,Σ,X,Y )︸ ︷︷ ︸
=p(W |z,κ,Y )

p(η, z,κ,Γ,Σ|X,Y )

∝ p(W |z,κ,Y )p(z|η)p(η|Γ,Σ,X)
∏

p(κ)
∏

p(Γ)

∝
{ D∏
d=1

p(ηd|Γ,Σ,xd)
( N∏
n=1

p(wd,n|β(d, n))p(zd,n|θd)
)}∏

p(κ)
∏

p(Γ)

∝
{ D∏
d=1

Normal(ηd|ΓTxTd ,Σ)
( N∏
n=1

Multinomial(zn,d|θd)

×Multinomial(wd,n|β(d, n))
)}
×
∏

p(κ)
∏

p(Γ),

4We denote the total input of words by W , which can, for instance, be represented by the so-called
document-term matrix, where each of the D rows corresponds to a document, with the v-th entry, v ∈
{1, . . . , V }, displaying the count of the v-th term within this document.
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where β(d, n) ∈ RV is the topic-word distribution for word n in document d which has

been assigned to topic k through zd,n. The topic-word distribution vectors βak have entries

βak,v ∝ exp
(
mv + κ

(t)
k,v + κ

(c)
a,v + κ

(i)
k,a,v

)
, v ∈ {1, . . . , V }, where κ(t)k,v, κ

(c)
a,v, and κ

(i)
k,a,v are the

log-transformed rate deviations of word v for topic k, for content variable level a, and for the

interaction of k and a, respectively.

2.3 Inference and Parameter Estimation

In this section, we brie�y describe how inference and parameter estimation for topic models,

in particular for the STM, are performed. Inference is conducted using variational inference,

where speci�cally a variational EM algorithm is employed for empirical parameter estimation.

As a detailed discussion of the underlying workings is outside the scope of this paper, we

refer the reader to the appendix and the referenced papers.

Since the STM, as well as all models it builds on, are (hierarchical) Bayesian models, the

central challenge we face is the exact determination of the posterior distribution. Recall that

in the section above, we derived the posterior up to proportionality, neglecting the division

by marginal distributions. The exact posterior distribution is intractable to compute due

to the marginal distributions in the denominator, which is why exact inference is infeasible

and variational inference is used instead. Generally, for a model with latent variables θ and

z and observable data x, variational inference involves approximating the posterior p(θ, z|x)

by postulating a simple distribution family q(θ, z) for the (joint) distribution of latent model

variables θ and z and subsequently determining the member of this family which minimizes

the "distance" to the true posterior distribution, measured using the Kullback-Leibler (KL)

divergence (Wang and Blei, 2013). The approximations of variational inference bring a great

amount of �exibility, but come at the cost of some bias, since the approximative distribution

family usually does not contain the true posterior.

In the appendix, we show that minimizing KL divergence between true posterior p and

the approximating variational distribution q is equivalent to maximizing a lower bound on

log p(x), the log-likelihood of the observed data x. This lower bound is called ELBO and is

de�ned as

ELBO := Eq[log p(θ, z, x)]− Eq[log q(θ, z)],

whose second component, Eq[log q(θ, z)], is the entropy of the approximate distribution q. To

be precise, maximizing ELBO (or minimizing KL divergence) refers to �nding the governing

parameter of the approximating distribution q which maximizes ELBO.

The optimality conditions resulting from maximizing ELBO lead to the coordinate ascent

algorithm for variational inference (Wang and Blei, 2013), which converges towards a local
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optimum (Bishop, 2006). However, this algorithm only works for conditionally conjugate

models, such as the LDA: all nodes in this model - in particular, the Dirichlet distribution

for drawing topic proportions, the multinomial distribution for assigning topics, and the

multinomial distribution for eventually picking words - are conditionally conjugate. The

STM, however, as well as the CTM before it, are non-conjugate models due to the logistic

normal distribution used to sample topic proportions, which is why algorithm updates are

not feasible and the algorithm is not (directly) applicable. As a remedy, Wang and Blei

(2013) developed Laplace variational inference, which uses Laplace approximations within

coordinate ascent algorithm updates and this way enables the application of the coordinate

ascent algorithm for the broader class of nonconjugate models, which includes the CTM and

the STM.

As stated above, the STM uses an EM algorithm for empirical parameter estimation. In

the E-step, the variational posterior distributions for topic proportions and assignment, q(θd)

and q(zd,n), respectively, are updated using Laplace variational inference and coordinate

ascent. In the M-step, the model parameters - speci�cally topical prevalence and content

coe�cients - are updated by maximizing ELBO with respect to them (Roberts et al., 2016).

3 Data

3.1 Data Collection

The current political landscape of Germany consists of six parties: the right-wing AfD, the

Greens (Bündnis 90/Die Grünen), the Christian Democrats (CDU/CSU ), the Left Party

(Die Linke), the liberal FDP, and the Social Democrats (SPD). These parties are represented

in the German parliament (Bundestag) according to the votes obtained during the 2017

German federal election (Bundestagswahl), which took place on September 24, 2017. The

legislative period amounts to 4 years, thus ending around September 2021. The parliament

currently contains a total of 709 seats. For the large majority of the 709 members of the

German parliament (Abgeordnete), information about their electoral district (Wahlkreis) is

available.

In order to analyze German political entities based on text data, we constructed a broad

database containing personal and Twitter data on an MP level as well as socioeconomic and

election data on an electoral-district level, as described in detail in the remainder of this

section. While parts of this database were used in the subsequent topic model analysis, it is

also to be used in future text-based analyses regarding German politics. As a �rst step in

constructing the database, we gathered personal information on all German MPs. Using the

BeautifulSoup web scraping tool (Richardson, 2007) in the Python programming language

(Van Rossum and Drake Jr, 1995) as well as a selenium webdriver, we gathered data such

13



as name, party, biographical information, electoral district, and social media accounts from

the o�cial parliament website5 for all of the 709 members of the German parliament during

its 19th election period, elected on September 24, 2017.6 An additional source of personal

MP-level information would be the MPs' personal homepages. However, after inspecting

some of these personal homepages at random, we found that there is no systematic way

to scrape them. Furthermore, hardly any of these websites contain any informative text

data comparable to tweets or Facebook posts. As a consequence, we decided against further

pursuing this potential source of information. Due to di�culties and recent restrictions

when scraping Facebook data, caused in parts by the aforementioned data scandal, we also

discarded Facebook as source of text data and focused solely on Twitter.

Since information on social media pro�les was scarce and incomplete on the o�cial par-

liament website, we additionally scraped o�cial party homepages of all of the six political

parties represented in the current parliament.7 MPs who provided a Twitter account neither

on the o�cial parliament website nor on their party's o�cial homepage were excluded. Us-

ing Python's tweepy library (Roesslein, 2020) to access the o�cial Twitter API, we scraped

all tweets by German MPs from September 24, 2017 through April 24, 2020, i.e., during a

total of 31 months. This initially yielded 342,542 tweets from a total of 470 members of

parliament.8 The tweepy library o�ers a variety of additional features to be extracted apart

from the mere tweet texts, such as the number of followers of an account, retweets, or how

many times a tweet was being liked or retweeted. While we only use original tweets in the

analysis presented in this paper, we included the most relevant additional Twitter features

in our database, for use in future analyses.

To complement personal and Twitter data, we also gathered socioeconomic data, such as

GDP per capita or unemployment rate, as well as 2017 election results on an electoral-district

level for all of the 299 electoral districts from the o�cial website of the Federal Returning

O�cer (Bundeswahlleiter)9. After removing the only MP labeled as independent (fraktions-

los) on the o�cial parliament website as well as 19 MPs without a speci�c electoral district

assigned to them (for matchability with socioeconomic data), the �nal dataset counted 450

MPs. Overall, 63% of all 709 MPs were thus included in the analysis. The corresponding to-

tal number of tweets amounted to 323,740. For those MPs without electoral district, electoral

district-level socioeconomic variables could potentially be imputed by using state averages or

5https://www.bundestag.de/abgeordnete
6As of March 30, 2020, the o�cial parliament website contained information on 730 MPs. This is because

MPs who resigned or passed away since the beginning of the election period are also listed on the website.
These MPs were manually excluded from further analysis.

7The o�cial homepage of the AfD party does not provide the Twitter pro�les of their members, which is
why for this party we had to manually gather the account names.

8tweepy restricts the total number of tweets retrievable to 3,200. For those MPs who posted more than
3,200 tweets during our period of analysis, the most recent 3,200 tweets were taken into account. However,
this only applied to two MPs.

9https://www.bundeswahlleiter.de
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values of nearby and/or similar districts. However, given that this only applies to 19 out of

the remaining 450 MPs and since imputing covariates would introduce further uncertainty,

we decided to exclude those MPs.

Figure 2 below shows total monthly tweet frequencies for our period of analysis, September

24, 2017 through April 24, 2020. As can be seen, tweet frequencies - though �uctuating -

show an increasing trend over time, peaking at almost 20,000 in March 2020. The decrease

for April 2020 can partly be explained by the fact that only the �rst 24 days of the month

were taken into account.
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Figure 2: Monthly tweet volume by German MPs from September 24, 2017

through April 24, 2020.

Next, data was grouped and tweets were concatenated on a per-user level (thus aggregat-

ing tweets across the entire 31 months) as well as on a per-user per-month level, yielding a

user-level and a monthly dataset. This means that a document represents the concatenation

of all of a single MP's tweets for the user-level dataset, while it represents a single MP's

monthly tweets for the monthly dataset. This also means that MP-level metadata such as

personal information and socioeconomic data (through the electoral-district matching) can

be used as document-level covariates. For the monthly dataset, the temporal component

(year and month) constitutes an additional covariate. Since it is reasonable to assume that

the importance of topics varies over time and due to resulting documents being shorter and

more easily interpretable, we chose the monthly dataset for further analysis.10 At this point,

the data preparation was completed, marking the starting point of the preprocessing required

10For instance, as stated in section 4.2, one topic is about COVID-19, which is clearly a relatively recent
topic. The monthly dataset allows for tracing the development of this topic's relevance over time: a �at curve
until January 2020, followed by a sharp increase during the �rst months of 2020. The user-level dataset, on
the other hand, would simply assign a low overall proportion to this topic.
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for topic analysis, which is identical for both the user-level and the monthly dataset.

3.2 Data Preprocessing

For preprocessing, we used the quanteda package (Benoit et al., 2018) within the R program-

ming language (R Core Team, 2020). As a �rst step, we built a quanteda corpus from all

documents. Next, we immediately transcribed German umlauts ä/Ä, ö/Ö, ü/Ü as well as the

German ligature ÿ as ae/Ae, oe/Oe, ue/Ue, and ss, respectively, and removed hyphens. Sub-

sequently, we transformed the text data into a quanteda document-feature matrix (DFM),

which essentially tokenizes texts, thereby converting all characters to lowercase. From the

DFM, we removed an extensive list of German stopwords, using the stopwords-iso GitHub

repository11, as well as English stopwords included in the quanteda package. Moreover, hash-

tags, usernames, quantities and units (e.g., 10kg or 14.15uhr), interjections (e.g., aaahhh or

u�f ), terms containing non-alphanumerical characters, meaningless word stumps (e.g., in-

nen from the German female plural declension, or amp, the remainder left after removing

the ampersand sign, &) were removed. Terms with less than four characters and terms with

a term frequency (overall number of occurrences) below �ve or with a document frequency

(number of documents containing the word) below three were excluded. Finally, we manually

removed overly frequent terms that would diminish the distinguishability of topics, such as

bundestag or polit (see semantic coherence in section 4.1 for a technical explanation).

We also performed word-stemming, which means cutting o� word endings to remove dis-

crepancies arising purely from declensions or conjugations, being of particular importance

for the German language. Due to the nature of the German language, the additional gains of

lemmatization (which aims at identifying the base form of each word) would only be small as

compared to the large increase in complexity, which is why we decided to use stemming only.

Another issue when dealing with German language documents is represented by compound

words, which are sometimes hyphenated, basically leading to a distinction where semanti-

cally there is none. We addressed this issue by removing hyphens in the very beginning of

the preprocessing and converting all terms to lowercase, thus "gluing together" compound

words; this way, terms like Bundesregierung and Bundes-Regierung are both transformed into

bundesregierung (and, after stemming, into bundesregier). Finally, automatic segmentation

techniques were not necesssary for the German language. An in-depth discussion of topic

model preprocessing and its application to Twitter data can be found in Lucas et al. (2015).

As a result of preprocessing, one empty MP-level document was dropped, so that a total of

10,998 (monthly) MP-level documents were eventually analyzed, each one associated with 90

covariates.

11https://github.com/stopwords-iso/stopwords-iso
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4 Model Selection and Global Characteristics

4.1 Hyperparameter Search and Model Fitting

Throughout this section we use the stm package, which is implemented in the R programming

language (Roberts et al., 2019). The most important hyperparameter choice when �tting an

STM is the number of topics, K. While there is no true or optimal number of topics, we

explore the hyperparameter space using the searchK function to get an understanding of the

impact of K on model �t. We use four of the metrics that come with this function, held-out

likelihood, semantic coherence, exclusivity, and residuals.

The held-out likelihood approach is based on document completion. The searchK function

randomly holds out a proportion of some of the documents; both the number of documents

from which a portion is held out and the respective held-out proportions can be speci�ed

by the user. This gives rise to a set of held-out words for which the likelihood is calculated,

given the trained model. Thus, the higher this held-out likelihood, the more predictive power

the model has on average. For more detailed information on held-out likelihood based on

document completion and other types of held-out likelihoods, see Wallach et al. (2009).

Regarding the second metric, �rst introduced by Mimno et al. (2011), a model with K

topics is semantically coherent whenever those words that characterize a speci�c topic k (i.e.,

the most frequent words within topic k) also do appear in the same documents. In order to

formally de�ne semantic coherence, let �rst D(v) be the document frequency of word v (that

is, the number of documents where v occurs at least once) and let D(v, v′) be the co-document

frequency of words v and v′ (that is, the number of documents where both v and v′ occur

at least once). Furthermore, consider the M most probable words in a given topic k. Then,

semantic coherence for topic k, Ck, is de�ned as follows:

Ck =
M∑
i=2

i−1∑
j=2

log

(
D(vi, vj) + 1

D(vj)

)
.

That is, semantic coherence is the sum of (logarithmized) proportions of word co-occurrences

to total word occurrences, the additive factor 1 in the numerator simply being a smoothness

adjustment. It becomes apparent that by having some words that are very frequent across

a couple of documents, we could achieve a high value for semantic coherence without our

topics being semantically coherent at all once we look beyond these common words (Mimno

et al., 2011; Roberts et al., 2019). As a partial remedy, we previously excluded some of such

overly frequent words (see section 3.2).

A natural "counter-metric" of semantic coherence is exclusivity, which basically expresses

to which degree words within a given topic only occur in that topic. To formalize this, �rst
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de�ne the empirical frequency of word v, v ∈ V , within topic k as β̂k,v.
12 These empirical

frequencies are then normalized across all topics k ∈ {1, ..., K}. This way, the normalized

frequencies now represent the probability of observing topic k, conditional upon the word

being v - that is, the exclusivity of word v regarding topic k. Formally, exclusivity of word v

to topic k, Ek,v, is thus de�ned as

Ek,v = β̂k,v/

K∑
j=1

β̂j,v.

Combining a word's frequency and exclusivity �nally yields its Frequency-Exclusivity (FREX )

score, explained in more detail in section 4.2 below and in Bischof and Airoldi (2012).

Finally, residuals is a metric based on residual dispersion. Recall that zd,n is drawn from

a K-category multinomial distribution, which is a member of the exponential family. The

dispersion parameter of a multinomial distribution is equal to one, according to theory. One

potential reason for an observed residual dispersion larger than one is that the number of

topics K was chosen insu�ciently small. See Taddy (2012) for a detailed derivation.

Another aspect to be taken into account when choosing K (or, to be precise, when

choosing a search grid for searchK ) is interpretability. While a large K certainly allows for

a more �ne-grained determination of topics, the resulting topics might be rather di�cult

to label. Furthermore, for large K we would obtain many topics which could be considered

sub-topics of the topics we would obtain when using a smaller value for K. As a consequence,

we select a search grid between �ve and 40, in steps of �ve. Before �tting the model, we

need to choose the document-level covariates we want to include. Since no model selection

approaches exist regarding the speci�cation of document-level covariates within the STM,

partly due to topic models being explorative by de�nition, we simply include those covariates

that seem to be most in�uential a priori: party and state (both categorical), date (as smooth

e�ect), as well as percentage of immigrants, GDP per capita, unemployment rate, and the

2017 election results of the MP's respective party (the last four as smooth e�ects and on an

electoral-district level). We choose degrees of freedom df = 5 for all smooth e�ects to avoid

spurious wiggles due to over�tting.13 No topical content variable is included at this stage.

The graph below shows the four metrics, as introduced above, for values of K between

�ve and 40 (in steps of �ve). Both 15 and 20 topics seem to be good trade-o�s between

the metrics used. As mentioned above, no true or optimal K exists. Taking into account

the interpretability aspect, we opt for K = 15. For comparison, we also conducted the

analysis presented in this section for K = 6 and K = 20. In general, the topics generated

12We use β̂k,v for empirical frequencies (i.e., word counts) within topic k to distinguish them from the
(normalized) word probabilities βk,v.

13The graphical illustrations of the relationship between topic proportions and continuous covariates in
sections 5 and 6 suggest that df = 5 is indeed su�cient.
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are similar, but for K = 6 only around three of them are clear-cut, while for K = 20 some

topics could easily be grouped together. This further corroborates our choice that K = 15

indeed seems to be a good trade-o�. Our model thus uses K = 15 as hyperparameter. For

model �tting, we again need to choose document-level covariates. We initially select the

same model speci�cations as in the hyperparameter search above (see sections 5.2 and 6.1 for

modi�cations) and set the gamma prior to "L1" to apply an L1 penalty, ensuring algorithm

convergence (see section 2.2).
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Figure 3: Model evaluation metrics for hyperparameter K (number of

topics).

4.2 Labeling

As a �rst step after �tting the model, we visually inspect the resulting topics, in particular

their most representative words. However, representativeness of words for a given topic

depends on the weighting metric used. The STM comes with four topic-word metrics -

highest probability, FREX, Lift, and Score - which are discussed in the following.

Given a topic k, highest probability simply outputs those words in the topic-speci�c em-

pirical word vector β̂k with the highest corpus frequency, i.e, those with the highest absolute

frequency across all documents within topic k. Using the same notation as in section 4.1

above, let β̂k,v again be the empirical frequency of word v within topic k. The highest prob-

ability word within topic k is then simply argmax β̂k,v
v∈V

. This relatively simplistic measure

only takes into account how often words occur in absolute terms, but not how speci�c those

words are to the given topic. This is why we observe words like wichtig, berlin, or frag within

the highest probability words for several topics. And since such words are very common,
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unspeci�c words, they are not particularly useful for distinguishing or labeling topics.

To additionally account for the degree to which a word exclusively belongs to a certain

topic, we also consider the top words according to the FREX metric. This metric considers

not only how frequent but also how exclusive words are. Formally, the FREX score of word

v with respect to topic k is calculated as

FREXk,v = (
ω

ECDF (β̂k,v/
∑K

j=1 β̂j,v)
+

1− ω
ECDF (β̂k,v)

)−1 = (
ω

ECDF (Ek,v)
+

1− ω
ECDF (β̂k,v)

)−1,

where ω is the weight assigned to exclusivity (set to 0.7 by default in the stm), Ek,v is the

word's exclusivity as de�ned in section 4.1, and ECDF is the empirical CDF. Thus, for a

given topic, FREXk,v is simply the harmonic mean of i) the rank of word v by frequency

within topic k (frequency rank) and ii) the rank of topic k by the frequency of word v, across

all topics j ∈ {1, ..., K} (exclusivity rank). Further information on the estimation of FREX

can be found in Roberts et al. (2019) and in Bischof and Airoldi (2012).

Lift is another topic-word metric, where the frequency of word v within topic k, β̂k,v, is

weighted by the inverse of v's relative frequency across the entire corpus, i.e., v's empirical

corpus probability. Formally,

Liftk,v = β̂k,v/(ωv/
∑
v

ωv),

where ωv denotes the word count of word v in the entire corpus. This way, Lift gives larger

weight to those words that rarely appear in other topics. Further information on Lift can be

found in Taddy (2012).

Finally, the Score metric for word v and topic k is formally de�ned as

Scorek,v = β̂k,v(log β̂k,v − 1/K
K∑
j

log β̂j,v).

Thus, Score weights word v's frequency within topic k by the di�erence between v's log

frequency within topic k and the average of v's log frequencies across all K topics. This can

roughly be interpreted as βk,v being weighted by the proportion of v's log frequency within

topic k to v's average logarithmic frequency across all topics. For further information on the

Score metric see the R package lda (Chang and Chang, 2010).

To get a broad overview of which words characterize each one of the topics, the table

below shows the �ve top words according to each of the four topic-word evaluation metrics,

for four selected topics (see appendix for top words of all topics).

A key task of topic analysis is to explore the latent space of the model; that is, we wish

to determine whether the topical clusters identi�ed by the model carry actual meaning and
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Topic 1 Top Words:
Highest Prob: buerg, link, merkel, frau, sich
FREX: altpartei, islam, linksextremist, asylbewerb, linksextrem
Lift: eitan, 22jaehrig, abdelsamad, abgehalftert, afdforder
Score: altpartei, linksextremist, frauenkongress, islamist, boehring
Topic 3 Top Words:
Highest Prob: brauch, wichtig, leid, dank, klar
FREX: emissionshandel, soli, marktwirtschaft, feedback, co2steu
Lift: aequivalenz, altersvorsorgeprodukt, bildungsqualitaet, co2limit, co2meng
Score: emissionshandel, co2limit, basisrent, euet, technologieo�
Topic 4 Top Words:
Highest Prob: sozial, miet, kind, arbeit, brauch
FREX: mindestlohn, miet, wohnungsbau, mieterinn, loehn
Lift: auseinanderfaellt, baugipfel, bestandsmiet, billig�ieg, binnennachfrag
Score: miet, mieterinn, mietendeckel, grundsicher, bezahlbar
Topic 6 Top Words:
Highest Prob: gruen, klimaschutz, brauch, klar, euro
FREX: fossil, erneuerbar, kohleausstieg, verkehrsminist, verkehrsw
Lift: abgasbetrug, abgebaggert, abschalteinricht, abschaltet, ammoniak
Score: erneuerbar, fossil, zdebel, verkehrsminist, klimaschutz

Table 1: List of top words for topics 1, 3, 4, and 6.

summarize this meaning by a one- or two-word label per cluster.14 While this is clearly

where human judgment should and does come into play, we attempt to conduct the labeling

in a very strategic (and thus less subjective) manner, following a three-step procedure. This

procedure is exempli�ed for topic 1. First, we consider the words contained in the topic, for

instance by simply inspecting the top words (see Table 1 above). For a better visualization,

we use a word cloud. As shown in Figure 4 below, for a given topic (i.e., conditional upon a

speci�c topic being chosen), it shows highest probability words weighted by their frequency.

Judging at �rst sight, topic 1 appears to be about right-wing nationalist issues, particularly

immigration.

Second, to get a more thorough insight into the topic, we take a look at those documents

that show the highest proportion for topic 1; that is, we consider the corresponding original,

unprocessed tweets. The most representative document for topic 1 has a proportion of topic

1 equal to 98.86%. It contains tweets from MP Martin Hess, a member of the AfD party from

Baden-Württemberg, during June 2018. That is, MP Martin Hess tweeted almost exclusively

about topic 1 during June 2018. The monthly document starts with:

"Ehem. Verfassungsrichter bestätigt AfD-Forderung: Zurückweisung illegaler Migranten drin-

gend geboten. Gegenwärtige Politik widerspricht dem Verstand und auch der Verfassung. Wir

14For an in-depth discussion of the meaningfulness of the latent space, see Chang et al. (2009).
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Figure 4: Word cloud for topic 1.

müssen zurück zu Recht & Ordnung, wie die #AfD seit fast 3 Jahren fordert!"

The second most representative document for topic 1, with an almost identical topic 1

proportion 98.37%, is from the same MP, this time from May 2018. The document begins

with:

"Mio-Überweisungen u.a. an Kanzleien unter #BAMF-Auÿenstellenleiterin, die mit Anwäl-

ten bandenmäÿig Asylbetrug begangen haben soll. Und die Frau ist noch frei und präsentiert

sich als Gutmensch. #Staatsanwaltschaft muss hier handeln und Haftgründe prüfen."

The documents exclusively focus on immigration issues, con�rming the �rst impression

gained through top words and word cloud: topic 1 concerns right-wing nationalist issues, in

particular immigration. As a third step in our labeling process we �nally assign a label to the

topic: in this case, "Right/Nationalist". We repeat this three-step procedure (inspecting top

words and word cloud, reading through top documents, assigning a one- or two-word label)

for all remaining topics, arriving at the manual labels shown in Table 2 below. Topics labeled

"Twitter/Politics" are primarily characterized by Twitter-speci�c and political jargon, while

the "Miscellaneous" topics do not exhibit any clear thematic tendency.

22



Topic 1 Right/Nationalist
Topic 2 Miscellaneous 1
Topic 3 Climate Economics
Topic 4 Social/Housing
Topic 5 Digital/Future
Topic 6 Climate Protection
Topic 7 Europe
Topic 8 Corona
Topic 9 Left/Anti-war
Topic 10 Twitter/Politics 1
Topic 11 Twitter/Politics 2
Topic 12 Miscellaneous 2
Topic 13 Twitter/Politics 3
Topic 14 Right-wing Extremism
Topic 15 Society/Solidarity

Table 2: List of topic labels.

4.3 Global-level Topic Analysis

Next, we identify two ways to calculate global topic proportions θ̄k (for a given topic k). In its

generic plot method (with argument type set to "summary"), the stm package implements

a simple (unweighted) average of θd,k across all documents, i.e., the average of MP-level

proportions across all MPs: θ̄k = 1
D

∑D
d=1 θd,k. However, as this approach does not account

for the size of documents - and thus, for the absolute number of words assigned to a topic -

we additionally weight each θd,k by the number of words in the respective documents, Nd, and

then average across documents. Figure 5 below shows all topics with their respective global

proportions for both weighting methodologies. We observe that for most topics, weighted and

unweighted proportions are rather similar, but there are exceptions. In particular, the topics

labeled as "Twitter/Politics", concerned with everyday political tweets, have much higher

unweighted than weighted frequencies; this makes sense, however, since such "diplomatic"

tweets tend to be shorter than those discussing speci�c content.

While labeling tells us which words best represent each topic - and thus, what each topic

truly represents - it does not yet tell us to which extent individual topics are related to each

other. In Figure 6 below, we visualize the similarity of two topics, Topic 3 (Climate Eco-

nomics) and Topic 6 (Climate Protection), in terms of their vocabulary usage. As suggested

by the topic labels already, there is a signi�cant overlap in vocabulary usage.

More generally, we can evaluate the connectedness between di�erent topics by means of

a matrix of correlations between document-level topic proportions θd. This is visualized in

Figure 7 (left panel). Most topics are negatively correlated with each other, which does
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(dark grey bars) and weighted by document length (light grey bars).
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not come as a surprise given the relatively low total number of topics, 15, and that topic

proportions are "supplements": the higher one topic proportion, the lower the total of the

others. Moreover, most topic correlations are rather weak in absolute size: the strongest

negative correlation (-19.84%) is the one between topic 1 (Right/Nationalist) and topic 15

(Society/Solidarity), while the strongest positive correlation (11.79%) occurs between topic 10

(Twitter/Politics 1) and topic 13 (Twitter/Politics 3). We can also visualize these correlations

using a network graph (Figure 7, right panel), where topics are connected by a dashed line

whenever they are positively correlated. We observe three small clusters as well as some
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isolated topics, one of them being topic 8, Corona, which makes sense since this topic only

entered the public sphere in early 2020, i.e., during the last months of our data collection

period. In general, the relationships between the topics, as depicted below, are in line with

their labeling.
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Figure 7: Global topic correlations as matrix (left) and graph (right).

5 Metadata Analysis - Topical Prevalence and Content

5.1 Topical Prevalence: Method of Composition and Direct Assess-

ment

We now proceed to analyze the relationship between metadata information (i.e., document-

level covariates) and topic proportions in an explorative fashion. We specify topical prevalence

as

µd,k = xTdγk = γk,partyd + γk,stated + fk(td) + gk(structd), (5.1)

for all documents d = 1, . . . , D, and for all topics k = 1, . . . , K, where

gk(structd) = g
(1)
k (GDPd) + g

(2)
k (unemploymentd) + g

(3)
k (immigrantsd) + g

(4)
k (votesd).

That is, the political party and federal state of the respective parliamentarian associated with

a document are speci�ed as simple categorical dummy e�ects, while date and electoral-district

structural covariates (GDP per capita, unemployment rate, percentage of immigrants, and

the 2017 vote share) are modeled as additive smooth functions.

Note that approximate inference implies replacing µd,k with λd,k, i.e., with the mean of

the approximate Gaussian posterior q(ηd,k). The estimates of Γ = [γ1| . . . |γK ] are updated

in a Bayesian linear regression during each iteration of the EM algorithm in the M-step; for

details see Roberts et al. (2013), p. 993.
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While topical prevalence does has an e�ect on the estimated topic proportions, the exact

speci�cation of topical prevalence does not. Both estimated topic proportions and heldout

likelihood are in general only marginally a�ected by the speci�c choice of the functional form.

However, completely removing topical prevalence, in which case the model reduces to a CTM,

does result in di�erent topic proportions, as we show in section 6.1. Since evaluation metrics

such as held-out likelihood are mostly una�ected by the exact choice of topical prevalence and

because the computational cost of �tting an STM is rather high, automatic model selection

methods with respect to topical prevalence are not available. A reasonable speci�cation of

topical prevalence therefore relies on the domain knowledge of the researcher.

There exist di�erent approaches to study the relationship between topic proportions and

prevalence covariates. One possibility is to directly assess the estimates Γ̂ and Σ̂ generated by

the STM. Since the document-level topic proportions θd follow a logistic normal distribution

(with median µd and covariance parameters Σ), interpretation of the results can be di�cult,

since the logistic normal distribution is not easily accessible. Nonetheless, we can still visu-

alize the relationship between a topic and a prevalence covariate, �xing other covariates at

their median (for categorical variables the majority vote is used).

Alternatively, the estimated topic proportions can be used as dependent variable of a new

regression on prevalence covariates. However, in contrast to a standard regression setting, in

this case the dependent variable has been estimated itself before the regression is performed.

Instead of simply using the maximum-a-posteriori (MAP) estimates of θd as the dependent

variable, having access to the posterior distribution of the topic proportions, we can account

for the uncertainty of the dependent variable. This can be achieved by employing a sampling

procedure known as the method of composition in the social sciences (Tanner, 2012, p. 52).

This procedure is implemented in the stm package through its function estimateE�ect.

In the following, we �rst introduce the method of composition. We discuss its imple-

mentation in the stm package and provide alternative regression approaches based on the

method of composition. Subsequently, we evaluate the relationship between prevalence co-

variates and topic proportions by directly assessing the estimates Γ̂ and Σ̂, as outlined above,

and compare the results of the two approaches.

Method of Composition

Let θ(k) := (θ1,k, . . . , θD,k)
T ∈ [0, 1]D denote the proportions of the k-th topic for all

D documents. As stated, we want to perform a regression of these topic proportions θ(k)

on prevalence covariates X ∈ RD×P . The true topic proportions are unknown, but the

STM produces an estimate of the approximate (variational) posterior of θ(k). A "naïve"

approach would be to regress the estimated mode of the approximate posterior distribution

on X. However, this approach neglects much of the information contained in the posterior
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distribution.

Instead, Roberts et al. (2016) employ a Monte Carlo sampling technique established

by Treier and Jackman (2008), which is known as the "method of composition" (Tanner,

2012, p. 52) in the social sciences. This method is implemented in the R package stm via

the function estimateE�ect. The idea is to repeatedly sample θ∗(k) from their approximate

posterior distribution and subsequently perform a regression for each sampled θ∗(k) on X in

order to take into account the uncertainty in θ∗(k).

Before we describe this method, we want to demonstrate how sampling θ∗(k) can be

achieved. First, for all documents we sample the unnormalized topic proportions η∗ :=

[η∗1| . . . |η∗D] from the approximate posterior q(η) =
∏

d q(ηd), to subsequently apply the

softmax θ∗ := [θ∗1| . . . |θ∗D] = softmax(η∗) (element-wise, i.e., for each of the K-dimensional

columns of topic proportions) and select the k-th column of θ∗ (which we denote as θ∗(k)).

To be precise, for all d ∈ 1, . . . , D, q(ηd) is a normal distribution, which emerges from the

Laplace approximation within variational inference; for details see Roberts et al. (2016), pp.

992-993. We denote the approximate posterior of topic proportions as q(θ(k)|X,W ), in order

to emphasize that the parameters of the posterior distribution are learned from the observed

data, i.e. prevalence covariatesX and wordsW (note that we have not included any content

variables Y ).

The method of composition applied in the STM, inspired by Treier and Jackman (2008),

can now be described by the following iteration, which is repeated m times:

1. Sample θ∗(k) from the variational posterior q(θ(k)|X,W ).

2. Run a regression model with response θ∗(k) and covariates X to obtain an estimate ξ̂∗

of regression coe�cients ξ∗ and covariance matrix of ξ̂∗, V̂ ∗ξ .

3. Sample ξ̃∗ from F (ξ̂∗, V̂ ∗ξ ), where F denotes the (asymptotic) distribution of ξ̂∗.

In the case of Treier and Jackman (2008), the regression model employed is a Cox regres-

sion, where estimators for the regression coe�cients are asymptotically normally distributed

(i.e., F is a multivariate normal distribution).

The idea of the method of composition is that the samples ξ̃∗ take into account the

uncertainty in θ(k). Additionally, the third step is performed in order to take into account the

uncertainty regarding the regression estimation. Visualization of topic-metadata relationship

then occurs as follows: For a (new) observation xpred, one can plot xpred vs. the sampled

predicted responses with xTpredξ̃
∗
i as linear predictor, for all i ∈ {1, . . . ,m}. The empirical

mean and other quantities of interest, such as credible intervals, are then calculated using

the m sampled response values.

While we agree with the approach of performing Monte Carlo sampling of topic propor-

tions in order to integrate over these latent variables, we have several concerns, especially
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regarding the speci�c application of the method of composition in the STM (and the accom-

panying R package).

� Problem 1: In the R package stm, the regression model employed in step 2 is an ordi-

nary least squares (OLS) regression; however OLS is not appropriate to model (sampled)

proportions, which are constrained to the interval (0,1).

� Problem 2: A general problem with the method of composition is the mixing of

Bayesian and frequentist methods. For instance, Treier and Jackman (2008) state that

the sampled regression coe�cients can be considered a sample from the posterior of

regression coe�cients. However, the way the method of composition is presented, we

do not perform a Bayesian regression and thus regression coe�cients do not follow any

distribution (only the estimators of regression coe�cients do); instead, regression coef-

�cients are assumed to be �xed (unknown) parameters from a frequentist perspective.

From a Bayesian perspective, the sampled ξ̃∗ can only be considered a sample from

the posterior of ξ in some regression models, however, with very questionable (uni-

form) prior assumptions. After having obtained the samples ξ̃∗, inference of parameters

is conducted in a classical Bayesian manner, e.g., calculating the empirical mean via

averaging.

� Problem 3: Separate modeling of topic proportions neglects topic interdependence

caused by the (multivariate) logistic normal distribution assumed within the generative

process of the STM.

In the following we further discuss these problems and propose alternative approaches.

5.1.1 Problem 1: Implementation via OLS in the stm package

As stated, the R package stm implements an OLS regression through its estimateE�ect func-

tion. This approach ignores that the sampled topic proportions are restricted to (0, 1). As

expected, using this framework we frequently observe predicted proportions outside of (0, 1),

as shown in Figure 8.

Alternative implementation

We can attempt to improve the approach employed within the stm package by replacing the

OLS regression with a regression model that assumes a dependent variable in the interval

(0, 1). As shown by Atchison and Shen (1980), a distribution that can be used to approx-

imate a logistic normal distribution is the Dirichlet distribution. However, note that the

Dirichlet distribution assumes less interdependence among components than implied by the

logistic normal distribution, as discussed in section 2. In case of the Dirichlet distribution the
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Figure 8: Estimated prevalence of topics 1 and 6 over time, generated

using estimateE�ect from the stm package

univariate marginal distributions are beta distributions. One possibility is thus to perform a

separate beta regression for each topic proportion on X.

As an alternative approximation we can employ a quasibinomial generalized linear model

(GLM). The k-th topic can be understood as one of two classes, with the remaining topics

forming the alternative class. To match the underlying logistic normal distribution more

closely, the quasi-likelihood furthermore allows for a �exible variance speci�cation.

Note that the distribution of regression coe�cient estimators is asymptotically normal

for both the beta regression (Ferrari and Cribari-Neto, 2004, p. 17) and the quasibinomial

GLM (Fahrmeir et al., 2007, p. 285). In both cases, we use a logit-link.

Visualization

We now apply the method of composition, based on either a beta regression or a quasibinomial

GLM, in order to visualize covariate e�ects. Here we only visualize the results obtained by the

quasibinomial GLM; the results of the beta regression, which show similar trends, are found

in the appendix. Setting the number of simulations to 100, we sample regression coe�cients

ξ̃∗1, . . . , ξ̃
∗
100. When visualizing the impact of a particular covariate, all other covariates are

held at their median (or majority vote, if categorical), in line with the methodology employed

in the stm package.

We exemplarily illustrate the relationship between covariates and topic proportions for

topic 4 ("Social/Housing") and topic 6 ("Climate Protection"). For smooth e�ects, it is

important to recall that their borders are inherently unstable, which is why one should

refrain from (over-)interpreting them. For both continuous and categorical variables, black

lines indicate the mean and the shaded area represents 95% credible intervals.

For topic 4, "Social/Housing", we observe that most continuous variables have a small

e�ect in absolute terms: the absolute variation in topic proportion across the covariate do-

mains merely amounts to 4%, compared to 8% for topic 6. For most covariates the trend
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Figure 9: Mean and 95% credible intervals for smooth e�ects, obtained

using a quasibinomial GLM.
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Figure 10: Mean and 95% credible intervals for di�erent political parties,

obtained using a quasibinomial GLM.

is rather ambiguous. Somewhat surprisingly, a very high unemployment rate is negatively

linked to topic 4.

The e�ect of the political party on the relevance assigned to the topic "Social/Housing"

is very much in line with a priori expectations: the left party and social democrats have the

highest topical prevalence (15% and 10%, respectively), and the nationalist party the lowest

(2%).

For the smooth e�ects of topic 6, we observe its prevalence peaks in September 2019,

corresponding to month t = 25, decreasing afterwards. The absolute changes in topic pro-

portions over time are rather small (around 3%). The percentage of immigrants within an

electoral district shows a negative relation with topic 6. Furthermore, topic 6 tends to be

discussed more frequently in mid-income electoral districts than in high- or low-income dis-

tricts. Finally, the link to the unemployment rate is somewhat ambiguous, although generally
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positive.

Regarding the relationship between the political party and the prevalence of topic "Cli-

mate Protection", we �nd high topical prevalence for the green party, as expected. Similar

to the smooth e�ects, total variation in topic proportions across parties amounts to approx-

imately 8%.

Finally, the graph below shows a summary comparison of topical prevalence across all par-

ties, for topics "Right/Nationalist", "Climate Protection" and "Social/Housing". The results

are generally consistent with expectations. The proportions of topics "Climate Protection"

and "Social/Housing" vary between 2% and 9% and between 2% and 15%, respectively. For

topic 1, "Right/Nationalist", note how topical prevalence for the AfD party amounts to more

than 40%, implying that more than 40% of the total content tweeted by AfD party members

is about right-wing/nationalist issues, particularly immigration; for all other parties, topic 1

is rather marginal below 3%.
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Figure 11: Topical prevalence by political party for topics 1, 4, and 6.

5.1.2 Problem 2: Mixing of Bayesian and Frequentist Approach

The regression employed within the method of composition is framed as a frequentist re-

gression. However, Treier and Jackman (2008) and the authors of the STM consider ξ̃∗ as

samples from the (marginal, i.e., integrated over latent topic proportions) posterior of re-

gression coe�cients. In case of an ordinary linear regression this is, however, only true by

assuming uniform priors for ξ. In general, the mixing of the Bayesian and the frequentist

framework within the method of composition is not well-founded theoretically. This is espe-

cially the case when employing an asymptotic distribution of regression coe�cient estimators
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from the frequentist regression framework, as is the case for the model considered by Treier

and Jackman (2008), the GLM and the beta regression.

Furthermore, note that uncertainty from previous plots is with respect to the prediction

of the mean of topic proportions. However, it is not obvious why this is preferable when

the objective is to explore the topical structure. In particular, the uncertainty with respect

to the predicted mean does not re�ect variation of topic proportions in the data. When

exploring the topic-metadata relationship, it might in fact be more instructive to examine

the (predicted) variation of topic proportions among individuals at di�erent covariate values.

Alternative implementation

Due to these concerns, we propose to replace the (frequentist) regression in the second

step of each iteration of the method of composition with an explicit Bayesian regression. In

particular, in case of a Bayesian regression we can sample proportions from the respective

posterior predictive distribution at the end of each step of the method of composition (i.e.,

conditioning on previously sampled θ∗(k)) at di�erent covariate values xpred. This allows us to

display the (predicted) variation of topic proportions at di�erent covariate levels. Further-

more, the calculation of empirical quantities of interest, such as the mean, now occurs within

a fully Bayesian framework, allowing for sound interpretations.

Speci�cally, in order to adequately model topic proportions we employ a Bayesian beta

regression with normal priors centered around zero. Depicting the results from the described

procedure (that is, sampling from the posterior predictive distribution at the end of each

iteration of the method of composition) in Figure 12, we �nd that the empirical mean is

mostly in line with results from our previous analyses. However, since "uncertainty" is now

with respect to the variation of (predicted) topic proportions in the data - and not with

respect to the prediction of their mean - 95% credible intervals di�er starkly compared to the

previous section. In general, we observe that in all cases there seem to be some individuals

with rather extreme topic proportions. This corresponds well to what we observe when

directly examining the estimated topical structure of the STM in a descriptive manner. For

instance, in section 4.1 we saw that the estimated proportion of topic 1 for MP Martin Hess

amounted to 98.86% in June 2018. We observe such high variation likewise for other topics

and covariate values. The fully Bayesian approach allows for a precise exploration of the

distribution of topic proportions at di�erent covariate values. The mid panel of Figure 12

tells us - for instance - that, based on the discovered topical structure, we can expect a lower

variation of proportions among parliamentarians for topic 6 in districts with a large share of

immigrants. If desired, we could also predict other quantiles of interest. In our view, this

approach allows for a much more intuitive exploration of the latent space of topic proportions

with respect to di�erent metadata dimensions.

32



0.045

0.050

0.055

2017-09 2018-09 2019-09
Date

E
xp

ec
te

d 
T

op
ic

 P
ro

po
rt

io
n

0.07

0.08

0.09

0.10

0.11

0.12

0 10 20 30
Immigrants (%)

E
xp

ec
te

d 
T

op
ic

 P
ro

po
rt

io
n

0.050

0.055

0.060

0.065

20,000 40,000 60,000 80,000 100,000
GDP per capita

E
xp

ec
te

d 
T

op
ic

 P
ro

po
rt

io
n

0.04

0.05

0.06

0.07

5.0 10.0
Unemployement Rate (%)

E
xp

ec
te

d 
T

op
ic

 P
ro

po
rt

io
n

Topic 4: Social/Housing

0.0

0.1

0.2

0.3

0.4

0.5

2017-09 2018-09 2019-09
Date

E
xp

ec
te

d 
T

op
ic

 P
ro

po
rt

io
n

0.0

0.2

0.4

0 10 20 30
Immigrants (%)

E
xp

ec
te

d 
T

op
ic

 P
ro

po
rt

io
n

0.0

0.2

0.4

0.6

20,000 40,000 60,000 80,000 100,000
GDP per capita

E
xp

ec
te

d 
T

op
ic

 P
ro

po
rt

io
n

0.0

0.2

0.4

5.0 10.0
Unemployement Rate (%)

E
xp

ec
te

d 
T

op
ic

 P
ro

po
rt

io
n

Topic 6: Climate Protection

0.0

0.2

0.4

0.6

AfD Bündnis 90/Die Grünen CDU/CSU Die Linke FDP SPD

Party

E
xp

ec
te

d 
T

op
ic

 P
ro

po
rt

io
n

Topic 6: Climate Protection

Figure 12: Smooth e�ects without credible intervals (left), smooth e�ects

with credible intervals (center), and e�ect of the political party (right).

Samples from the posterior predictive distribution of topic proportions

within the method of composition.

5.1.3 Problem 3: Univariate Modeling of Topic Proportions

The STM being an extension of the correlated topic model (CTM), it is assumed that the topic

proportions follow a logistic normal distribution, such that θd ∼ LogisticNormalK−1(Γ
TxTd ,Σ).

Within the CTM, the Dirichlet distribution of the LDA has been replaced with a logistic

normal distribution, in order to allow for a joint dependence among topics. Therefore, as

mentioned above, separately modeling topic proportions is a simpli�cation.

In order to examine the relation of prevalence covariates and topic proportions considering

the joint dependence among latter ones, we can attempt to directly use the output produced

by the STM: inference within the STM involves �nding the maximum-a-posteriori (MAP)

estimate Γ̂ and the maximum likelihood estimate Σ̂.

In order to get an impression of how the assumed generative process of topic proportions

in the STM behaves, we can plug the estimates Γ̂ and Σ̂ into the logistic normal distribution

and visualize sampled values from this distribution. Given a new observation xpred, we can

sample θ∗d from LogisticNormalK−1(Γ̂
TxTpred, Σ̂) by:

1. Drawing η∗d ∼ NK−1(Γ̂TxTpred, Σ̂) and setting η∗d,K = 0.

2. Mapping to the simplex, i.e., for all k = 1, . . . , K: θ∗d,k =
exp(η∗d,k)

exp
(∑K

i=1 η
∗
d,i

) .
3. Setting θ∗d := (θ∗d,1, . . . θ

∗
d,K)T .

We repeated the above steps 1000 times for each input value of a selected variable, while

�xing other variables at their median, and obtained the empirical mean as well as 95%

credible intervals. Plotting the results, we observe that the mean shows a similar trend to

our previous analyses.

As in the fully Bayesian regression approach, the variation is again with respect to the

topic proportions in the data (i.e., not with respect to the predicted mean). Compared to the

fully Bayesian approach from the previous section, the variation we observe is much lower.

This is due to the fact that plugging in Γ̂ and Σ̂ is a "naïve" approach. In order to get a more
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Figure 13: Smooth e�ects without credible intervals (left), smooth e�ects

with credible intervals (center), and e�ect of the political party (right).

realistic picture, we would have to �rst sample prevalence parameters from their posterior,

and subsequently plug these samples into the logistic normal distribution, yielding samples

from the posterior predictive distribution of topic proportions. This would likely result in a

variation on the scale of the results obtained using the fully Bayesian regression approach.

Unfortunately, sampling of prevalence parameters is not possible using the R package stm.

5.2 Topical Content

The STM provides an additional way to incorporate covariate e�ects into the model, apart

from prevalence variables that impact topic proportions across documents. To be speci�c, a

categorical variable can be selected as topical content variable. While the prevalence variables

in�uence the propensity of the 15 topics for each document, the content variable now allows

for the word distributions for a given topic to vary across documents, according to the content

variable level. Note that this is a completely new model, which is why one should not expect

the resulting topics to be similar to those in Section 4.

Formally, recall that the word distribution used to eventually pick a word, β(d, n), gener-

ally depends on the (latent) indicator variable determining the word's topic assignation zd,n

and the document-level topical content variable Yd, which has A levels. In the prevalence

model, no (document-level) topical content variable is speci�ed, implying β(d, n) is picked

exclusively according to zd,n; since zd,n is a word-level variable, β(d, n) is constant across all

documents for a given topic k. When specifying a content variable Y , however, β(d, n) now

depends both on topic k and on the level a ∈ {1, ..., A} the content variable Yd assumes for

document d. That is, the total number of β-vectors, each one of length V , now increases

from K to K · A.
For our speci�c case, since the topical content variable needs to be categorical, we choose

the variable party, being categorical by de�nition. In doing so, we implicitly posit that

for a given topic, an MP's party additionally in�uences the vocabulary used when tweeting

about that speci�c topic. For instance, this implies that an AfD party member tweets about

immigration issues in a di�erent linguistic manner than, say, a green MP. Since for the 2017
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election period the German parliament contains members of six parties, Y is now technically

a matrix with 10998 rows and six columns,15 yielding a total of 15 · 6 = 90 β-vectors.

After �tting the model, we proceed as for the prevalence model in 4, that is, by inspecting

top words and identifying topic labels. An additional di�culty, however, is that we do not

have clear-cut top words per topic anymore; instead, we now have topic-level top words for

each of the 15 topics, party-level top words for each of the six parties, as well as interaction top

words for each of the 90 topic-party combinations. The table below presents topic labels for

all 15 topics, identi�ed by using the same three-step procedure as for the prevalence model

before. As can be seen, �ve topics are labeled as miscellaneous, re�ecting the complexity

caused by the large number of β-vectors.

Topic1 Right/Nationalist 1
Topic2 Miscellaneous 1
Topic3 Left/Humanitarian
Topic4 Housing
Topic5 Innovation
Topic6 Green/Energy
Topic7 Miscellaneous 2
Topic8 Corona
Topic9 Foreign A�airs
Topic10 Election
Topic11 Right/Nationalist 2
Topic12 Miscellaneous 3
Topic13 Miscellaneous 4
Topic14 Twitter/Politics
Topic15 Miscellaneous 5

Table 3: List of topic labels for STM with topical content variable
(party).

The topical content model allows for vocabulary usage to di�er across political parties,

given a topic. In Figure 14 below, we visualize this e�ect for the Corona topic, contrasting

the green party "Bündnis 90/Die Grünen" with the right-wing nationalist party "AfD". The

result is very insightful: even for a topic as clear-cut and novel as COVID-19, stark di�erences

in terms of vocabulary usage arise. In particular, the AfD uses language suitable to describe

immigration (migration, grenz ) in order to discuss Corona, which very much re�ects the

unimodality of the party's political orientation (as can also be seen in Figure 11 at the end

of section 5.1). The green party, on the other hand, seems to address the topic much more

speci�cally, mentioning key words like massnahm or kind.

While this type of visualization is indeed insightful, several concerns regarding the topical

15Recall that the dimensions of matrix Y are due to dummy encoding of the topical content variable in
the stm model implementation, whereas for notational simplicity we refer to Y as vector and Yd as scalar.
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kris

wichtig

gemeinsam

brauch

dank

kind
europaeisch

zeit

frag

solidaritaet

schnell

wirtschaft

grenz

buerg

regier
migration

partei

hilf
massnahm

folg

AfDB'90/Die Grünen

Figure 14: Di�erences in vocabulary usage across parties for the Corona

topic.

content model prevail: �rst of all, there is no natural candidate for the content variable, which

- for labeling, interpretational, and computational purposes - should ideally be binary. Our

dataset contains very few categorical variables, none of them binary. Furthermore, there is

no natural, non-arbitrary way to binarize any of the covariates; for instance, binarizing the

variable party into conservative and liberal would misclassify at least one party. Therefore,

our choice to use party as content variable is the result of a lack of alternatives, rather than

being based on sound statistical or theoretical considerations. This, in turn, is re�ected in the

di�culties with the labeling: recall that one third of all topics were eventually being labeled

as miscellaneous. And while the previous illustration of inter-party di�erences in vocabulary

usage is indeed insightful in terms of topic exploration and visualization, the aforementioned

doubts lead us to discard the topical content variable for further analysis. In fact, in the next

section we consider a model without any metadata covariates.

6 Double Usage of Metadata and Causal Inference

6.1 A Clean Two-step Approach

In section 5 we analyzed the relationship between topic proportions and metadata, visualizing

the e�ect of prevalence covariates and deciding against the further inclusion of a topical

content variable. As brie�y mentioned in section 2 already, a point of concern when using

the STM is the double usage of covariates: they are used in the estimation of the topics

themselves (and thus, in the estimation of the latent topic proportions) and subsequently
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covariates are again used to estimate their relationship with topic proportions. From classical

regression analysis, we are used to interpret such relationships, oftentimes ascribing a causal

meaning to the corresponding coe�cients; for instance, we might attempt to infer that a

higher percentage of immigrants within an electoral district makes politicians prioritize issues

other than climate protection, referring to Figure 9 in section 5.1. Topic models, however,

present a crucial di�erence as compared to classical statistical models: the target variable

- θ - is latent and thus itself being estimated. For explorative or descriptive purposes, this

does not pose a problem because there is only a single step: discovering topics in the text

documents. Yet whenever in a second step, after estimating the model, we wish to estimate

causal e�ects, we face a potential problem since the same documents and covariates are

used in both steps. If, for instance, we misspecify the linear predictor of topical prevalence

covariates, this misspeci�cation corrupts the estimated topic proportions. Consequently, the

subsequent estimation of covariate e�ects on these previously estimated topic proportions is

biased, presumably amplifying the initial misspeci�cation.

In this section, we focus on the double usage of (prevalence) covariates, while section

6.2 deals with double usage of documents in general. To avoid double usage of covariates,

we �t an STM without including any covariates in the model estimation, thus reducing the

model to a simple CTM. In a second, isolated step we estimate the relationship between topic

proportions and covariates. That is, we forgo the potential (small) gains of joint estimation

of the STM in favor of a clear-cut two-step procedure. As a �rst step, we �t the CTM

analogously to the original STM from section 4 (which includes topical prevalence variables),

the only di�erence being that no document-level metadata is used in the estimation of the

CTM. In line with the performance results in Roberts et al. (2016), we observe a slightly

higher held-out likelihood for the STM (-8.5478) than for the CTM (-8.5492) when holding

out a random 50% of the words from a randomly chosen 10% of the documents. Moreover,

we notice that the topics themselves (in terms of their top words) are almost identical to

those of the STM, which is why we use the same topic labeling as in section 5.1. As for

di�erences in topic proportions between the two models on a document level, we consider

the average topic proportion deviation per document, 1
K

∑K
k=1 |θd,k(STM) − θd,k(CTM)|.

The resulting average di�erence between topic proportions per topic, averaged across all

documents, amounts to 1.61%; that is, for an average document, the absolute di�erence in

the proportion of each topic is less than 2%, which is rather moderate. These di�erences in

topic proportions between STM and CTM further cancel each other out across documents:

global topic proportions (obtained by simply averaging across all documents) are almost

identical across the two models, with the average di�erence per topic only amounting to

0.23%. Altogether, topic proportions seem to be a�ected by the topical prevalence covariates

only to a small degree on an individual document level, and this e�ect almost disappears

entirely if we consider corpus-wide topic proportions.
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In the second step, we consider the relationship between topic proportions and prevalence

covariates for the CTM and compare the resulting relationships with those of the original

STM from section 4. For comparability, we use the same methodology as in section 5.1, that

is, applying the method of composition with a quasibinomial regression of individual topic

proportions on covariates. The only di�erence is that prevalence covariates were not included

in the model used to generate topic proportions. Consequently, sampling all (unnormalized)

topic proportions jointly via the logistic normal distribution (as in section 5.1.3) is not ap-

plicable here, as Γ is no longer part of the model. In the �gures below, we visualize the

CTM topic proportions of topics 4 (Social/Housing) and 6 (Climate Protection) in relation

with continuous covariate values and across parties and compare the results to those of the

STM (Figures 15 and 16). As for the relationship between continuous covariates and topic

proportions, the results for STM and CTM are very similar: for both topic 4 and topic 6, the

trends across the respective covariate range are almost identical for the two models, while the

scale di�ers slightly (with scale di�erences hardly exceeding 2%). Turning to the categorical

variables, in particular party, the conclusion is very similar for topic 4: we observe minor scale

di�erences and very similar patterns. For topic 6, the scale of the topic proportions is again

slightly di�erent compared to the STM, and now we also observe some (minor) di�erence in

the relative positioning of the di�erent parties.
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Figure 15: Mean and 95% credible intervals for smooth e�ects, obtained

using a quasibinomial GLM (no covariates included in model estimation).

Topic proportions across parties for topics 1 (Right/Nationalist), 3, and 6 are further

summarized in Figure 17 below. Comparing the results to those of the STM, we observe

one rather large di�erence: the overall proportion of topic 1 for the AfD party is now almost

10% lower than in the STM (though still at almost 35%). Furthermore, for all topics and

covariates, the comparison between STM and CTM does not change if we use beta regression

instead of quasibinomial regression within the method of composition, corroborating our

results (see �gures 24, 25, and 26 in the appendix).

All in all, the relationships between topical prevalence variables and topic proportions are
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Figure 16: Mean and 95% credible intervals for di�erent political parties,

obtained using a quasibinomial GLM (no covariates included in model

estimation).
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Figure 17: Topical prevalence by political party for topics 1, 4, and 6

(quasibinomial GLM, no covariates).

very similar to those of the STM when instead using a clean two-step estimation procedure

where no covariate information is used in the model estimation. This indicates that the

problem of double usage of covariate information in the STM, potentially generating biased

estimates, is not overly severe. However, we wish to remind the reader that at this point, we

have not yet accounted for the double usage of documents - even within this "clean" two-step

procedure, the estimation of topic proportions is still based on the same observations (i.e.,

documents) that are used in the second step. In section 6.2, we elaborate on the potential

problems arising from this and present a possible solution.
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6.2 Causal Inference: Train-test Split

In section 5.1, we �rst estimated latent topic proportions using the STM and then assessed

the relation between these document-level topic proportions and prevalence covariates. In

particular, the documents that were used to obtain the topic proportions were the same that

were subsequently used to quantify relationships between covariates and topic proportions.

As Egami et al. (2018) argue, this double usage of data causes both an identi�cation problem

and an over�tting problem; hence inferences about covariate e�ects are biased. Additionally,

since in the STM prevalence covariates a�ect estimated topic proportions, there is not only

a double usage of data (i.e., in the sense that the same documents are used twice), but also

a direct double usage of prevalence covariates as the estimated latent topic proportions are

regressed on the former.

The problems arising from double usage of documents are best understood when consid-

ering a classical causal inference scenario. Therefore, assume that there are two groups, a

treatment group and a control group. Aside from treatment, individuals from both groups

are similar. The objective is to quantify the treatment e�ect, which in our case is the e�ect

of treatment on the prevalence of a speci�c topic. The identi�cation problem occurs because

estimating the topic model in order to discover latent topic proportions can introduce an

additional dependency among individuals. In such a case the response of an individual (i.e.,

the topic proportion) depends not only on treatment of this individual, but also on treatment

of other individuals. Consequently, the estimation of treatment e�ects in the second stage

is biased, since the assumption that the response is only determined by treatment of that

individual is not valid. In addition to this identi�cation problem, we might face an instance of

over�tting: as with any model, we likely mistake noise for patterns. In such a case, again, the

response is not solely determined by treatment of an individual, but additionally by speci�c

characteristics of other individuals. This also results in a biased estimate of the treatment

e�ect.

The problems described can be addressed using a framework proposed by Egami et al.

(2018). The general idea is to split the data D into a training set Dtrain and a test set

Dtest. The training set is used to determine a model in order to infer latent topic proportions

from any text assumed to be generated by the same underlying process as the training

set. Subsequently, this estimated model is applied to the test set in order to assess the

relation between test set topic proportions and test set prevalence covariates. The train-test

split solves the identi�cation problem, because when predicting the topic proportion for an

individual on the test set, there is no dependence on treatment of other individuals from

the test set since the model used for prediction is determined by training set observations

only. Therefore, when estimating the treatment e�ect by comparing predicted proportions

between di�erent test set observations, the assumption that each proportion is independent
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of other test set individuals' treatment holds. Likewise, idiosyncratic noise from the training

set, which determines the model used to predict test set topic proportions, is unlikely to be

found on the test set. Thus, the problem of over�tting is also solved. In the following, we

explain the exact procedure for the STM (note that Egami et al. (2018) focus, for the most

part, on the general framework, while the technical details of the implementation within the

STM are not discussed in depth) and evaluate the results when applied to our data.

6.2.1 Model Estimation on the Training Set

On the training set, we estimate components of the STM similarly to the estimation on

the full data set. That is, we input documents, i.e., words and metadata from the training

set, and obtain estimates (β̂train, Γ̂train, Σ̂train), where β̂train is associated with the topic-word

distribution and Γ̂train as well as Σ̂train are the topical prevalence parameters.

6.2.2 Prediction of Topic Proportions on the Test Set

Prediction of topic proportions on the test is not straightforward, since the topic proportions

are latent and the STM was not designed for the speci�c purpose of predicting these latent

variables on a set of new, unseen data. The fundamental idea is to estimate the variational

posterior of the latent variables, that is, the topic proportions θd, where d ∈ Dtest (note that

zd is integrated out in the STM), conditional on the model parameters (β̂train, Γ̂train, Σ̂train)

from the training set as well as the words Wtest from the test set. This functionality is

implemented in the stm package through the function �tNewDocuments, which by default

outputs the MAP estimates of topic proportions θd, for all d ∈ Dtest. Note that estimating

the variational posterior of the latent variables, conditioned on the parameters and the words,

is precisesly what occurs during each E-step of the EM Algorithm. Thus, the implementation

of �tNewDocuments simply consists of one E-step with inputs (β̂train, Γ̂train, Σ̂train,Wtest). It

is, however, not obvious how to exactly input Γ̂train and Σ̂train into the E-step. Depending on

the characteristics of the speci�c analysis conducted by the researcher, Egami et al. (2018)

propose three di�erent alternatives:

1. Covariate-speci�c prior: Before applying the E-step, Γ̂train is used to obtain µ̂d :=

(Γ̂train)T (xd)
T , for each document d ∈ Dtest in the test set. Each document is then

updated performing the E-step with inputs (µd,Σ,β) = (µ̂d, Σ̂train, β̂train) together with

the respective document-speci�c words; for the exact update machanism see Roberts

et al. (2013), pp. 992-993. The problem with this approach is, however, that for

two documents from the test set containaing the exact same words, di�erent topic

proportions are predicted if the prevalence covariates di�er. However, in such a case we

would want the causal e�ect of the covariates on the topic proportions to be zero.
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2. Average prior: The average prior circumvents the problem of the covariate-speci�c

prior, as described above, by simply using - for each document in the test set - the

average µtrain := 1
|Dtrain|

∑
d∈Dtrain

(Γ̂train)T (xd)
T of all document-speci�c means from the

training set. The covariance Σ̂train - which we now denote asΣtrain - is recalculated based

on the new average µtrain according to formula (11) on p. 993 in Roberts et al. (2013).

The E-step for each document d ∈ Dtest from the test set is accordingly performed with

inputs (µd,Σ,β) = (µtrain,Σtrain, β̂train) together with the document-speci�c words. In

this scenario, prevalence covariates from the test set have no in�uence at all on the

prediction of test set topic proportions.

3. No prior: If no prior is used, then for each document d ∈ Dtest in the test set the E-step

is performed using µd = 0 and replacing Σ̂train with a diagonal covariance matrix with

very large diagonals.

The covariate-speci�c prior cannot be used in our case due to the problem described above,

that is, di�erent topic proportions being predicted for identically worded test set documents

if their prevalence covariates di�er. The option "no prior" can be useful if the metadata on

the test set is believed to be linked di�erently to topics than is the case on the training set.

In most cases the second option, "average prior", should provide the best trade-o�, since in

this case metadata from the training set is directly used to predict topic proportions, but the

problem of the covariate-speci�c prior is solved. Note that consequently there is no double

usage of covariates in this case.

6.2.3 Estimation of the Average Treatment E�ect

Following Egami et al. (2018), we de�ne the Average Treatment E�ect (ATE) on prevalence

of topic k as

ATEk := E[θ
[treatment]
d,k − θ[control]d,k ], (6.1)

where θ
[treatment]
d,k and θ

[control]
d,k denote the topic proportions for the d-th document and k-th

topic under treatment and control, respectively. (Note that for document d, we only observe

either θ[treatment]
d,k or θ[control]d,k .) That is, we are interested in the average e�ect of treatment

on topic proportion k of an individual, assuming that this average e�ect is identical across

all individuals. In other words, we assume the change in a topic proportion induced by

treatment is a random variable with equal mean for all individuals.

In order to estimate ATEk, as reasoned above, it is crucial to separate the documents used

for constructing the mechanism to discover latent topic proportions from the documents to

which we apply this mechanism. Formally, using either the option "no prior" or "average

prior", we can denote this mechanism as a function gtrain, which we determine on the training
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data together with the parameters (β̂train, Γ̂train, Σ̂train). The prediction of the k-th topic

proportion for a test set observation d ∈ Dtest (as outlined above) can then be written as

θ̂d,k = gtrain(wd, β̂train, Γ̂train, Σ̂train), where wd denotes the observed words of document d.

To estimate the treatment e�ect on a data set D, we determine the average di�erence of

predicted topic proportions between both groups, i.e.,

ÂTEk =
1

|Dtreatment|
∑

d∈Dtreatment

θ̂d,k −
1

|Dcontrol|
∑

d∈Dcontrol

θ̂d,k, (6.2)

where θ̂d,k is the predicted topic proportion for the d-th document and k-th topic. Egami

et al. (2018) show that, if additional conditions hold, ÂTEk estimated on previously unseen

test data Dtest is an unbiased estimate of ATEk.
16 In contrast, if we do not split the data and

"naïvely" predict topic proportions on the same data used to estimate the topic model, we

obtain a biased estimate, due to both the identi�cation problem and the over�tting problem

described above.

6.2.4 Results

We now depict our results from the train-test split, where we split the data into two equally

sized sets, for the options "average prior" and "no prior". Note that the test data cannot

consist of words which have not been seen in the training data. Therefore, all previously

unseen words are removed from the test data. After removing the words, the test data

contains 80.6% of the original words. Since we use only a subset of the full data, the estimated

topics are slightly di�erent from those obtained using the full data; however, most topics are

similar. We assign new labels to the topics, a complete list of which can be found in the

accompanying R code of this paper.

In contrast to section 5.1, the focus of this section lies on quantifying causal e�ects between

covariates and the relevance of a topic, since the train-test framework is most appropriate to

conduct such types of analyses. As mentioned before, �tNewDocuments outputs the MAP

estimates of the variational posterior of topic proportions for the test set. In Figure 18 we

depict these MAP estimates of topic proportions, along with topic proportions obtained for

the training data, for two selected topics.

The UN Climate Action Summit 2019 was held on September 23, 2019. As can be

observed in the left panel of Figure 18 below, the topic associated with climate issues was

discussed to a much larger extent during that time than the year before. While the MAP

estimates for the di�erent prior speci�cations on the test set are rather similar, the estimated

e�ect for the training data is much larger. If we compare the estimated topic proportions

for a topic we labelled as 'Emancipation' for the two opposing parties 'AfD' and 'Bündnis

16Precisely, we predict θ̂d,k = gtrain(wd, β̂train, Γ̂train, Σ̂train), for each document d ∈ Dtest.
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90/Die Grünen', we �nd similar results (see right panel of Figure 18): the average di�erence

of estimated topic proportions between both parties is larger on the training data. Also, note

that credible intervals on the training data di�er from those on the test data in both cases.

September 2018

September 2019

0.00 0.25 0.50 0.75 1.00
Topic Proportion

Test Set, Average Prior

Test Set, No Prior

Training Set

Effect of UN Climate Summit on Topic 'Green/Climate'

AfD

Bündnis 90/Die Grünen

0.00 0.25 0.50 0.75 1.00
Topic Proportion

Test Set, Average Prior

Test Set, No Prior

Training Set

Effect of Poltical Party on Topic 'Emancipation'

Figure 18: Maximum-a-posteriori (MAP) estimates of topic proportions on training and test data.

Points display the mean, lines 2.5% and 97.5% credible intervals.

In Figure 19 we visualize the ATE estimated on training and test data with di�erent prior

speci�cations (note that this is simply the di�erence of the means depicted in Figure 18).

The results con�rm that there is a substantial di�erence between the estimated e�ects.
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Figure 19: Estimated Average Treatment E�ects (ATE) using training and

test data.

Finally, note that there are several general concerns when conducting a causal inference

study. For instance, if the treatment group is not a random subsample of the population,

the resulting estimator of the treatment e�ect might su�er from selection bias.
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7 Conclusion

Nowadays, information from a wide variety of �elds is publicly available on social media and

various other forms of online appearances. Using techniques such as web scraping, the data

- frequently text - is readily obtained. In order to extract the information contained within,

a proper analysis of large-scale unstructured text is often a central task. Within this �eld,

topic modeling plays an important role.

In this paper we applied the Structural Topic Model (STM) to a large data set of Twitter

posts and meta-information associated with members of the German Bundestag. In a �rst

step, examining the estimated proportions of topics provided a concise summary of the pre-

dominant themes contained within the tweets. Moreover, associating topic proportions with

metadata in a descriptive manner enabled us to explore the topical structure along di�erent

dimensions, such as time or membership in a political party. Beyond such explorative anal-

ysis, we presented a train-test split framework for the STM, recently developed by Egami

et al. (2018), in order to determine cause-e�ect relationships between metadata covariates and

topics. Extending the traditional topic modeling framework to examine causality between

estimated topics and metadata is a challenging task and a current �eld of research.

Throughout our analysis we paid particular attention to the statistical assumptions and

properties of the STM. While our comparison between the STM and the CTM con�rms that

metadata does have an in�uence on the estimated topics, this in�uence seems to be rather

small in general. Nevertheless, we believe that the STM's leveraging of document-speci�c

characteristics results in an estimated topical structure which is more realistic than is the

case when employing models that do not incorporate metadata information. This is also

re�ected by a higher held-out likelihood of the STM when compared to simpler topic models,

as shown by Roberts et al. (2016).

When the explicit aim is to investigate the association between metadata and topics,

aside from potential improvements in model �t, the advantages of the STM are less obvious.

As with other topic models, the estimation of such relationships occurs in a separate second

step. That is, the STM (and especially its implementation in the R package stm) does not

directly produce a usable estimate of the relationship between metadata and topics. In-

stead, the authors of the STM employ the method of composition, implemented through the

function estimateE�ect in the stm package, in order to estimate such relations. Within this

approach, sampled topic proportions are regressed on metadata covariates using an ordinary

least squares (OLS) regression. We demonstrated several shortcomings of this approach and

presented possible alternatives. First, when dealing with (sampled) topic proportions, these

are restricted to the interval (0, 1). Using regression approaches that assume a dependent

variable in (0, 1), we extended the method of composition within the framework of the STM.

Second, mixing of Bayesian and frequentist approaches within the method of composition is
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theoretically not well-founded; we addressed this problem by explicitly employing a Bayesian

regression. We believe that this approach is sound and well interpretable and propose its

usage in future analyses. Third, separately modeling topic proportions, as is the case with es-

timateE�ect, is a simpli�cation since interdependence among di�erent topics is neglected. We

drafted an alternative approach by assessing the estimated covariance structure of prevalence

covariates directly; however, this approach needs further re�nement.

When examining causal e�ects beyond explorative purposes, we suggest to perform a

train-test split. Conducting both steps on the same data, i.e., the estimation of topics and

the subsequent estimation of e�ects based on these topics, results in a biased estimation of

e�ects. As discussed in section 6.2, the STM is well-suited for a train-test framework, since

it allows for the inclusion of information contained within metadata of the training set when

predicting topic proportions on the test set. This is a clear bene�t of the STM, emerging

from its more advanced design compared to other topic models such as LDA or CTM.

While recently there have been considerable advancements, topic modeling - like other

unsupervised learning methods - still presents an active �eld of research. This particularly

holds for questions regarding causality between metadata and topics but also more generally

for their generic relationship within a common modeling framework. For instance, automatic

model selection and testing with respect to prevalence covariates is currently infeasible within

the STM. Thus, a correct speci�cation of topical prevalence relies on domain knowledge of

the user. Furthermore we demonstrated that once the model has been speci�ed there exist

di�erent approaches to assess topics and their relation to metadata. Some of these approaches

have severe shortcomings and others can be further re�ned in order to obtain an even more

realistic picture. For instance, the direct approach presented in section 5.1.3 uses MAP

estimates of topical prevalence coe�cients Γ; future model implementations should enable

sampling from the posterior of Γ and thus a fully Bayesian approach. Such a procedure

could potentially also be used in order to predict topic proportions without conditioning on

words (in contrast to the procedure described in section 6.2). Moreover, regarding topic-

metadata relationships, this paper focused on explorative aspects. Inference concerning the

importance of speci�c document features is left to future research. Finally, alternative model

designs could prove to be even more suitable for conducting topic analysis, especially with

regards to (causal) inference. Future work is needed to address such concerns and thereby

improve the insights generated by topic models.
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8 Appendix

Appendix A: Variational Inference

In line with Wang and Blei (2013), consider a generic topic model with latent variables θ and

z as well as observed data x:

p(θ, z, x) = p(x|z)p(z|θ)p(θ).

The exact posterior distribution

p(θ, z|x) =
p(θ, z, x)∫
p(θ, z, x)dzdθ

is usually intractable due to the high-dimensional integral, which is why the distribution

needs to be approximated.

As stated in section 2.3, in variational inference a simple distribution family q(θ, z) is

posited and subsequently we determine the member of this family - that is, the variational

parameter(s) - that minimizes the KL divergence. Note that, for computational purposes, we

compute KL divergence of the true posterior p from the approximating posterior q, KL(q||p),
whereas intuitively one would seek to minimize KL(p||q).

The most popular variational inference technique is mean-�eld variational inference (also

called mean-�eld variational Bayes), where we posit full factorizability of q(θ, z), that is,

q(θ, z) = q(θ)q(z). θ and z are thus assumed to be independent with their own distributions

and variational parameters φ (which we suppress for improved readability). Since θ and z

are actually dependent, this approximate distribution family q(θ, z) does not contain the true

posterior p(θ, z|x).

Let us now write out the KL divergence of p from q:

KL(q||p) = Eq[log
q(θ, z)

p(θ, z|x)
]

= Eq[log q(θ, z)]− Eq[log p(θ, z|x)]

= Eq[log q(θ, z)]− Eq[log p(θ, z, x)] + log p(x)

Since KL(q||p) ≥ 0 (which can be easily shown using Jensen's inequality), it follows that

log p(x) ≥ Eq[log p(θ, z, x)]− Eq[log q(θ, z)].

The left-hand side of the above inequality is the marginal log likelihood of observed data x

and is also called evidence (of the observed data). Note that the evidence is not computable

- otherwise we would not need to resort to variational inference in the �rst place. The right-
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hand side thus presents a lower bound on the evidence and we de�ne the Evidence Lower

BOund (ELBO) as

ELBO := Eq[log p(θ, z, x)]− Eq[log q(θ, z)],

where the second component of the ELBO, Eq[log q(θ, z), is the entropy of the approximate

distribution q. Equivalently, we could say that the evidence constitutes an upper bound

for the ELBO. This means that we actively maximize the ELBO (which is therefore also

called variational objective), which in turn is equivalent to minimizing the KL divergence

of the true posterior p(θ, z|x) from the approximate distribution q(θ, z). Therefore, the

approximation q(θ, z) - or, more precisely, the variational parameters φ of q(θ) and q(z) -

that maximizes the ELBO simultaneously minimizes KL divergence (Blei et al., 2003; Wang

and Blei, 2013). Wang and Blei (2013) show that for the chosen factorization of the joint

distribution p(θ, z, x), and using the optimality conditions as derived in Bishop (2006), we

obtain the following solutions when setting ∂ELBO
∂q

!
= 0:

q∗(θ) ∝ exp{Eq(z)[log p(z|θ))p(θ)]},

q∗(z) ∝ exp{Eq(θ)[log p(x|z))p(z|θ)]}.

The coordinate ascent algorithm iteratively updates one of these two expressions while hold-

ing the other one constant, but requires closed-form updates to do so. This requirement

is ful�lled as long as all model nodes are conditionally conjugate, i.e., as long as for each

node in the model "its conditional distribution given its Markov blanket (i.e., the set of

random variables that it is dependent on in the posterior) is in the same family as its condi-

tional distribution given its parents (i.e., its factor in the joint distribution)" (Wang and Blei

(2013), p. 1008). The authors consequently de�ne a class of models where some nodes are

not conditionally conjugate, the so-called nonconjugate models ; for this class, using Laplace

approximations, the variational family is shown to be q(θ, z) = q(θ|µ,Σ)q(z|φ); that is, q(θ)

is now Gaussian with variational parameters µ and Σ.

The STM in particular constitutes a nonconjugate model, since p(θd) is logistic normal

and thus not conjugate with respect to the multinomial distribution p(zd|θd). Consequently,
no closed-form update is available for q(ηd). Using mean-�eld variational inference, the ap-

proximate posterior family is
∏D

d=1 q(ηd)q(zd), where q(ηd) is Gaussian and q(zd) is binomial

(Roberts et al., 2016). Given the posterior, inference now consists in �nding the particular

member of the posterior distribution family that maximizes the approximate ELBO. (Due to

the subsequent Laplace approximation, ELBO does not constitute a true lower bound on the

evidence and the updates do not maximize ELBO directly, which is why Roberts et al. (2013)

use the term approximate ELBO. See Wang and Blei (2013) for further discussion.) Applying
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Laplace variational inference, q(ηd) is approximated using a (quadratic) Taylor expression

around the maximum-a-posteriori (MAP) estimate η̂d, which yields a Gaussian variational

posterior q(ηd), centered around η̂d, and allows for a closed-form solution of q(zd). Iteratively

updating q(ηd) and q(zd) thus constitutes the E-step of the EM algorithm.

The M-step consists in maximizing the approximate ELBO with respect to model param-

eters. Prevalence parameters Γ and Σ are updated through linear regression and maximum

likelihood estimation (MLE), respectively. The updates for topic-word distributions βk (or

βak if a content covariate is speci�ed) are obtained through multinomial logistic regression.

Further details are provided in Roberts et al. (2013) and in the appendix of Roberts et al.

(2013). Moreover, the appendix of Blei et al. (2003) provides a detailed description of vari-

atonal inference and empirical parameter estimation for the (conditionally conjugate) LDA

model.

Appendix B: Additional Tables and Figures

Additional Figures and Tables of Section 4

Topic 1 Top Words:

Highest Prob: buerg, link, merkel, frau, sich

FREX: altpartei, islam, linksextremist, asylbewerb, linksextrem

Lift: eitan, 22jaehrig, abdelsamad, abgehalftert, afdforder

Score: altpartei, linksextremist, frauenkongress, islamist, boehring

Topic 2 Top Words:

Highest Prob: frag, einfach, �nd, genau, halt

FREX: geles, tweet, sorry, quatsch, lustig

Lift: baseball, demjen, duitsland, garn, haeh

Score: schmunzel, tweet, fuerstenberg, sorry, geles

Topic 3 Top Words:

Highest Prob: brauch, wichtig, leid, dank, klar

FREX: emissionshandel, soli, marktwirtschaft, feedback, co2steu

Lift: aequivalenz, altersvorsorgeprodukt, bildungsqualitaet, co2limit, co2meng

Score: emissionshandel, co2limit, basisrent, euet, technologieo�

Topic 4 Top Words:

Highest Prob: sozial, miet, kind, arbeit, brauch

FREX: mindestlohn, miet, wohnungsbau, mieterinn, loehn

Lift: auseinanderfaellt, baugipfel, bestandsmiet, billig�ieg, binnennachfrag

Score: miet, mieterinn, mietendeckel, grundsicher, bezahlbar

Topic 5 Top Words:
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Highest Prob: digital, jung, duesseldorf, bildung, christian

FREX: fdpbundestagsabgeordnet, duesseldorf, rimkus, intelligenz, startups

Lift: boeing, dettenheim, duesseldorfbilk, eheim, elektrokleinstfahrzeug

Score: fdpbundestagsabgeordnet, rimkus, digital, duesseldorf, uranfabr

Topic 6 Top Words:

Highest Prob: gruen, klimaschutz, brauch, klar, euro

FREX: fossil, erneuerbar, kohleausstieg, verkehrsminist, verkehrsw

Lift: abgasbetrug, abgebaggert, abschalteinricht, abschaltet, ammoniak

Score: erneuerbar, fossil, zdebel, verkehrsminist, klimaschutz

Topic 7 Top Words:

Highest Prob: europaeisch, wichtig, europa, international, thank

FREX: foreign, policy, clos, clear, important

Lift: alam, bucerius, bulgaria, doping, judgment

Score: need, important, great, foreign, today

Topic 8 Top Words:

Highest Prob: kris, wichtig, brauch, kind, hilf

FREX: corona, coronakris, virus, pandemi, coronavirus

Lift: covid19, schutzmask, 600milliardenfond, abiturpruef, abstandhalt

Score: corona, coronakris, pandemi, coronavirus, virus

Topic 9 Top Words:

Highest Prob: krieg, link, europaeisch, regier, international

FREX: milita, voelkerrechtswidr, aufruest, wa�enexport, libysch

Lift: katalan, abho, airbas, antimilitarist, aufklaerungsdat

Score: voelkerrechtswidr, libysch, milita, iran, voelkerrecht

Topic 10 Top Words:

Highest Prob: herzlich, glueckwunsch, wichtig, freu, gespraech

FREX: gmuend, achim, backnang, sommertour, schwaebisch

Lift: 24stundendien, abschlussfoto, absolventinn, abstandskriteri, afrikastrategi

Score: backnang, gmuend, achim, bentheim, sauerla

Topic 11 Top Words:

Highest Prob: p�eg, versorg, wichtig, chemnitz, patient

FREX: mention, neuwied, automatically, unfollowed, checked

Lift: mention, unfollowed, alicia, alois.karl, altenkirch

Score: mention, unfollowed, reach, automatically, windhag

Topic 12 Top Words:

Highest Prob: frau, gruen, frag, antrag, debatt

FREX: bielefeld, innenausschuss, streichung, selbstbestimm, bundesinnenminist
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Lift: abstammungsrecht, altruist, atrium, bundesgeschaeftsstell, cannabispolit

Score: bielefeld, innenausschuss, u.spd, lobbyistengab, amri

Topic 13 Top Words:

Highest Prob: berlin, schoen, dank, freu, woch

FREX: buongiorno, moin, frank, kiel, leipzig

Lift: altlandsberg, anrath, bergenenkheim, blindenleitsyst, bueromitarbeit

Score: buongiorno, moin, schoen, neers, berlin

Topic 14 Top Words:

Highest Prob: partei, link, demokrat, klar, wahl

FREX: thuering, hoeck, faschist, neuwahl, kemmerich

Lift: epost, gezittert, oktoberrevolution, parteischaed, uebergangsmp

Score: faschist, kemmerich, thuering, ramelow, hoeck

Topic 15 Top Words:

Highest Prob: dank, glueckwunsch, herzlich, gemeinsam, europa

FREX: zusammenhalt, antisemitismus, lasst, hass, vielfalt

Lift: 40jahr, afdtyp, dierk, fruendt, mutmacherinn

Score: dank, hass, zusammenhalt, binding, antisemitismus

Table 4: Top words for all topics for the STM �tted in section 4.

Additional Figures and Tables of Section 5
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Figure 20: Mean and 95% credible intervals for smooth e�ects, obtained using beta regression.
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Figure 21: Mean and 95% credible intervals for di�erent political parties, obtained using beta

regression.
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Figure 22: Topical prevalence by political party for topics 1, 4, and 6 (beta

regression).
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Figure 23: Smooth e�ects without credible intervals (left), smooth e�ects with credible intervals

(center), and e�ect of the political party (right).
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Figure 24: Mean and 95% credible intervals for smooth e�ects, obtained using beta regression (no

covariates included in model estimation).
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Figure 25: Mean and 95% credible intervals for di�erent political parties, obtained using beta

regression (no covariates included in model estimation).
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Figure 26: Topical prevalence by political party for topics 1, 4, and 6 (beta

regression, no covariates).
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