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Topic modeling is a key research area in natural language processing and has inspired innovative studies 
in a wide array of social-science disciplines. Yet, the use of topic modeling in computational social science 
has been hampered by two critical issues. First, social scientists tend to focus on a few standard ways of 
topic modeling. Our understanding of semantic patterns has not been informed by rapid methodological 
advances in topic modeling. Moreover, a systematic comparison of the performance of different methods 
in this field is warranted. Second, the choice of the optimal number of topics remains a challenging task. 
A comparison of topic-modeling techniques has rarely been situated in a social-science context and the 
choice appears to be arbitrary for most social scientists. Based on about 120,000 Canadian newspaper 
articles since 1977, we review and compare eight traditional, generative, and neural methods for topic 
modeling (Latent Semantic Analysis, Principal Component Analysis, Factor Analysis, Non-negative Matrix 
Factorization, Latent Dirichlet Allocation, Neural Autoregressive Topic Model, Neural Variational Document 
Model, and Hierarchical Dirichlet Process). Three measures (coherence statistics, held-out likelihood, 
and graph-based dimensionality selection) are then used to assess the performance of these methods. 
Findings are presented and discussed to guide the choice of topic-modeling methods, especially in social 
science research.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Topic modeling refers to a group of statistical and machine-
learning methods which are used to extract meaningful topics and 
explore semantic patterns of digitized text data. In recent years, 
the topic-modeling methods have increasingly been adopted by 
scholars from different disciplines who are interested in big data 
research and computational social science [1–4]. Most noteworthy 
among these research efforts is the wide use of statistical genera-
tive models, such as the latent Dirichlet allocation (LDA), in social 
science research.

Yet, computational social science has not been well informed by 
an explosion in methods and algorithms for topic modeling in the 
past two decades [1,5,6]. As suggested by DiMaggio [7], most topic-
modeling techniques require various methodological decisions that 
many social scientists are unfamiliar with, have not considered, or 
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lack experience with. Moreover, a systematic comparison of tra-
ditional and novel methods has not been explicitly conducted to 
guide the application of topic modeling in social sciences. In par-
ticular, although the choice of the optimal number of topics (also 
referred as the choice of K in the statistics and machine-learning 
literature) is a critical decision for researchers to explore seman-
tic patterns and specify the abstraction of meaningful components 
in a text corpus, the choice of K still appears to be a black box 
for most social scientists and is subject to their subjective, if not 
arbitrary, assessment.

Drawing on 119,480 articles published by three mainstream 
Canadian newspapers (The Globe and Mail, The Toronto Star, and Na-
tional Post) from January 1st 1977 to June 30th 2019, we review 
and use eight topic-modeling methods (Latent Semantic Analysis, 
Principal Component Analysis, Factor Analysis, Non-negative Ma-
trix Factorization, Latent Dirichlet Allocation, Neural Autoregressive 
Topic Model, Neural Variational Document Model, and Hierarchical 
Dirichlet Process) to assess the choice of K in topic modeling. By 
adopting various data reduction, statistical generative, and neural 
variational modeling techniques, our investigation aims to provide 
a more holistic view of the application of topic modeling and offer 
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practical guidance for the choice of K , especially for computational 
social scientists.

2. Preprocessing and word representation

We apply the following procedures to the text corpus before it 
is processed by topic modeling. Common stop words in English [8]
such as “the”, “a”, and “an” are removed. Next we apply the RAKE 
(Rapid Automatic Keyword Extraction) algorithm [9] to identify key 
phrases in the corpus, and then combine words into phrases such 
that words like “united” and “kingdom” are combined into “united 
kingdom”. After the data-cleaning procedure, we represent the text 
corpus using a document-word matrix X : each column of the ma-
trix corresponds to a document and each row of the matrix corre-
sponds to a word [10]. To indicate a word’s relative importance in 
the corpus, elements of the matrix are also weighted by the con-
ventional term frequency-inverse document frequency (tf-idf) [11]. 
One way to calculate the tf-idf weight wt,d of a term (word) t and 
a document d is as follows [12],

wt,d = tft,d × log
N

dft
,

where tft,d is a term t ’s frequency in a document d, N is the to-
tal number of documents, and dft represents the total number of 
documents in a text corpus containing the term t . wt,d increases 
if a term has a higher frequency in a document but such increase 
in the term-frequency weight is offset by this term’s popularity 
across all documents in a corpus. This tf-idf weight thus filters out 
popular common words in a text corpus.

3. Topic modeling methods investigated

We next briefly review these eight topic-modeling methods to 
be investigated in this study.

3.1. Latent semantic analysis

Latent semantic analysis (LSA), which draws on singular value 
decomposition and a low-rank approximation of a document-word 
matrix, has long been adopted by researchers from different fields 
to identify meaningful themes in a text corpus [13,14]. To illustrate 
how LSA works, we have the singular value decomposition (SVD) 
of a document-word matrix X as:

X = U�V T ,

where both U and V are orthogonal matrices and � is a diag-
onal matrix. To understand the three matrices, we note that the 
square matrix X X T contains all dot products denoting the corre-
lation between any two word vectors across all documents, and 
X T X contains all dot products denoting the correlation between 
any two documents. We have:

U T X X T U = ��T and V T X T X V = �T �,or

X X T = U��T U T and X T X = V �T �V T .

X X T and X T X have the same non-zero eigenvalues expressed by 
��T (or, equally by �T �), and their corresponding eigenvectors 
are contained in U and V , respectively.

The number of positive singular values in � corresponds to the 
rank of X , or the number of topics in topic modeling, while the 
values of singular values indicate the relative importance of these 
topics. For a space spanned by singular vectors associated with 
these singular values, the coordinates of a word i across differ-
ent topics are denoted by the i-th row of U and the coordinates 
2

of a document j across all topics are denoted by the j-th col-
umn of V T . The corresponding loadings of all words on the k-th
topic are denoted by elements in the k-th columns of U ; and the 
corresponding loadings of all documents on the k-th topic are de-
noted by elements in the k-th rows of V T . While topics identified 
by the LSA method can be expressed by clusters of words and/or 
documents once they are projected to a semantic space, we use 
columns of U to denote topics and their corresponding relations 
with words. If the values of singular values are below a specific 
threshold, researchers can remove these small singular values to 
achieve a low-rank approximation of the document-word matrix 
X [15].

3.2. Principal component analysis

Principal component analysis (PCA) can be viewed as an ex-
tension of SVD [16]. To identify distinctive features of its covari-
ance matrix X X T , a document-word matrix X is projected into 
orthogonal directions. PCA is looking for a projection matrix P
so that, after the projection, the covariance matrix Y Y T of the 
new document-word matrix Y = P X has the largest variance in 
these projection directions. In this process, these projection di-
rections suggested by the projection matrix P correspond to the 
basis vectors, which are orthogonal to each other. Otherwise, for 
example, the direction of the eigenvector associated with the sec-
ond largest eigenvalue (variance) can be parallel to or even overlap 
with that associated with the largest eigenvalue (and so forth for 
the directions of the remaining eigenvectors), which cannot sug-
gest distinctive features of the data. The off-diagonal elements (i.e., 
covariance) of Y Y T should consequently be zero. We have:

Y Y T = (P X)(P X)T = P X X T P T = D,

where D should be a diagonal matrix. Now we rank the normal-
ized eigenvectors z1, z2, · · · , zp of X X T to have a new orthogonal 
matrix Z = (z1, z2, · · · , zp), and let:

Z T X X T Z = �T � = � =

⎛
⎜⎜⎜⎝

λ1
λ2

. . .

λp

⎞
⎟⎟⎟⎠ . (1)

Here p is the number of words. D becomes a diagonal matrix 
when we make P = Z T . The projection also corresponds to the 
maximization of zT

i X X T zi when zT
i zi = 1. If we take the derivative 

of zT
i X X T zi − λzT

i zi with respective to zi , zi must be an eigen-
vector of X X T since (X X T − λI)zi = 0. The matrix containing all 
the eigenvectors of X X T provides the loadings of all words on any 
topic, which brings a PCA approach to topic modeling. We treat 
these principal components as topics, and can obtain words of a 
topic through loadings of a principal component. The LSA and PCA 
models are similar to each other in that they both extract “com-
ponents” from a document-word matrix X . These components can 
contain both positive and negative values. Yet, the interpretation of 
negative values in a topic-modeling setting can be difficult.

3.3. Factor analysis

While LSA and PCA aim to extract major components from the 
data matrix, factor analysis (FA) tries to represent the data matrix 
and its internal relations through latent variables (or factors) based 
on a parametric model and a series of assumptions. The idea of FA 
can be illustrated as follows. We obtain a new document-word ma-
trix X∗ by centering each row of X . That is, we center the weight 
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of each word across the whole corpus of N documents. We next 
represent the p words using latent factors:

Y N×p = X T∗ = F N×k Ak×p + εN×p,

where F is a matrix, with the i-th column containing N obser-
vations (assumed independent) of the i-th factor Fi (which is a 
real-valued random variable), A is a matrix representing the coef-
ficients (called loadings) of all the words on each of the k factors, 
and ε is a matrix of random variables modeling the error, which is 
sometimes referred to as specific factors. The FA model is defined 
with the following assumptions.

1) The factors F1, . . . , Fk are assumed mean-zero, and the covari-
ance matrix of the vector (F1, . . . , Fk)

T is assumed to be the 
k × k identity matrix;

2) Each row of ε is considered to be an independent replication 
of the random vector �ε, where �ε ∈Rp , E[�ε] = 0, and Cov(�ε) =
� = diag{�1, . . . , �p};

3) Cov(�ε, (F1, . . . , F p)T ) = 0.

Let Y T
i be the i-th row of Y . From these assumptions we have

Cov(Yi) = Cov
(

AT (F1, . . . , Fk)
T + �ε

)

= AT I A + � = AT A + �.

The identity Cov(Yi) = AT A + � has two implications. First, it is 
possible for researchers to estimate the loading matrix A first, and 
then derive the latent factors. Second, for any 1 ≤ i ≤ N , we write 
Yi = (Yi,1, . . . , Yi,p)T . We then consider the j-th word to obtain

Var(Yi, j) = (AT A + �) j, j = ‖a j‖2 + � j,

where a j ∈ Rk is the j-th column of A, namely, A = [a1, . . . , ap]. 
Also, Cov(Yi, j, Yi,l) =

〈
a j,al

〉
if j �= l. The sum of squared loadings 

of Yi, j on all the k factors, ‖a j‖2, denotes the extent to which Y j
is explained by all factors (the dependence of Yi, j on all factors).

We use the EM algorithm to implement factor analysis [17,18]. 
To have better explanatory power, these independent factors are 
often rotated to achieve maximum variance.

The link between PCA and FA has been noted in existing lit-
erature [13,19]. In particular, consider the SVD of the estimated 
covariance matrix,

1

N − 1
Y T Y = U�U T ,

where U = [U1, . . . , U p] ∈Rp×p is an orthogonal matrix, and � =
diag{λ1, . . . , λp} is a diagonal matrix storing the ordered eigenval-
ues λ1 ≥ λ2 ≥ · · · ≥ λp . We have

AT A ≈ Cov(Yi) ≈ 1

N − 1
Y T Y = U�U T

=
(√

λ1U1, . . . ,
√

λp U p

)⎛
⎜⎝

√
λ1U T

1
...√

λp U T
p

⎞
⎟⎠ .

Therefore, the first k vectors can be used to form an estimate of A,

Â =
⎛
⎜⎝

√
λ1U T

1
...√

λkU T
k

⎞
⎟⎠ .

Alternatively, one may use this matrix as a starting point for esti-
mation. The resulted factors are considered as weight vectors for 
each topic. We specify the top words in a topic according to the 
3

same principle as previously discussed for LSA and PCA. The words 
are sorted according to their factor values and only these with rea-
sonably high values are retained.

3.4. Non-negative matrix factorization

Non-negative matrix factorization (NMF), or non-negative ma-
trix approximation, factorizes a matrix V into two matrices W and 
H , where all elements of the three matrices are not negative [20]:

Vn×m ≈ Wn×r Hr×m.

The dimension of r is often much smaller than that of m and 
n. The advantage of NMF over other factorization algorithms can 
be illustrated as follows. By making every element in these ma-
trices non-negative, any column vector vi in V is represented by 
a weighted sum of column vectors in W , and the corresponding 
weights of column vectors are expressed by elements in the i-th 
column of H :

vi ≈ w1h1i + w2h2i + · · · + wrhri = W hi .

Using this non-negative factorization technique, researchers can 
study how a whole system consists of different parts through these 
positive weights. The idea behind NMF is inherently connected to 
how the relations between a whole system and its different parts 
are perceived by human beings [20].

The relevance of NMF to topic modeling, especially the prob-
abilistic latent semantic analysis (pLSA), has been discussed [21]. 
For a document-word matrix X , we define elements of W as 
wik = P (topick)P (wordi |topick), define elements in H as hkj =
P (document j |topick), and write elements xij as:

xij =
∑

wikhkj

=
∑

P (topick)P (wordi|topick)P (document j|topick).

The idea described here is in line with that of pLSA, where a prob-
abilistic model is used to generate topics, and words/documents 
are then generated based on the distribution of topics.

3.5. Latent Dirichlet allocation

Based on a generative statistical model, LDA uses latent factors 
to capture semantic similarities of words and documents [22]. The 
procedure of LDA can be summarized as follows. To begin with, 
researchers need to specify the optimal number of topics K . Let 
p be the total number of words we study. A specific document w
is modeled as a sequence of words w = (w1, . . . , w�) of length 
� ∼ Poisson(ξ), where ξ is pre-specified. For this document w, 
a K -dimensional probability vector θ with its non-negative coor-
dinates summed to one is used to model the topic mixture. To 
generate θ , one uses θ ∼ Dirichlet(α) with α ∈RK+ left for estima-
tion. For each 1 ≤ n ≤ �, a random topic zn ∈ {1, . . . , K } is assigned 
to the n-th word with zn ∼ Multinomial(θ). Eventually, the n-th
word wn ∈ {1, . . . , p} is drawn randomly from Multinomial(βzn ). 
Here β = [β1, . . . , βK ] is a p × K matrix to be estimated, of which 
the i-th column is a probability vector characterizing the distribu-
tion of the p words in the topic i. In [23], the likelihood

L(α,β|θ, z,w) = p(θ |α)

�∏
n=1

[
p(zn|θ)p(wn|βzn )

]

is multiplied through all the documents, and maximized with the 
technique of variational inference, for the estimation of α and β .
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3.6. A Neural Autoregressive Topic Model: DocNade

As informed by the Replicated Softmax [24] and the Neural Au-
toregressive Distribution Estimator (Nade) [25], the DocNade uses a 
neural autoregressive model to process multinomial word distribu-
tions and learn meaningful word representations from unlabelled 
texts [26]. The Replicated Softmax can be viewed as a general-
ization of the restricted Boltzmann machine (RBM), which deals 
with binary observed and hidden (latent) variables. The Replicated 
Softmax can handle multinomial observed variables, with shared 
connections among each multinomial observation and latent vari-
ables.

One disadvantage of the RBM is that the calculation of condi-
tional probabilities is intractable and needs to be approximated by 
mean-field inference. Drawing upon the fact that a D-dimensional 
distribution can be denoted as a product of conditional distribu-
tions (the probability chain rule), the Nade assumes that the out-
put in every step is a linear combination of the previous values and 
passes the inputs through a feed-forwarding neural network. The 
product of these previous conditional probabilities constitutes a
joint distribution over observations and can be readily maximized 
via the gradient of the negative log-likelihood [25].

By combining the Replicated Softmax and the Nade, the Doc-
Nade adopts a tree of binary logistic regressions to model condi-
tional probabilities at each step [26]. More specifically, each root-
to-leaf path in the probabilistic tree represents a word [27]. More-
over, each transition in the tree is controlled by a set of binary 
regressors and the occurrence of a specific word is determined by 
a product of transition probabilities of a particular tree path. Com-
pared with the Replicated Softmax, the introduction of tree nodes 
has greatly reduced the computational complexity of the DocNade: 
its training complexity scales logarithmically, rather than linearly, 
with the vocabulary size [26]. Finally, it should be noted that the 
DocNade aims to provide a holistic view of semantic patterns in 
a document because it uses permutations of words in the whole 
document regardless of their order of appearance.

3.7. A Neural Variational Document Model

The Neural Variational Document Model (NVDM) provides a 
neural variational framework for topic modeling [28,29]. Probabil-
ity generative models including the LDA often rely on an analytical 
approximation (e.g., variational Bayes) for the distributions over 
latent variables. Yet, a high dimensional integration in Bayesian 
inference often becomes intractable when generative models are 
complex. Instead, the neural variational inference framework as 
a deep-learning method uses inference networks such as mul-
tilayer perceptrons (MLP) to model posterior probabilities of la-
tent semantics [28]. In other words, the posterior probabilities are 
“learned” when the connection weights of perceptrons are updated 
via minimizing performance errors. As an unsupervised generative 
model, NVDM extracts a semantic latent variable for each docu-
ment via an MLP encoder, which compresses text representations 
into hidden vectors, and uses a softmax decoder to generate the 
words. Similar to LDA, it deals with the bag-of-words representa-
tion.

The NVDM can be explained as follows [28]. For a latent vari-
able h and a document-word vector x, we have the posterior dis-
tribution of the latent variable h as:

p(h|x) = p(h, x)

p(x)

where p(x) = ∫
p(h, x)dh. The idea of variational inference is to up-

date the inference-network parameters φ so that an MLP encoder 
qφ(h|x) is close to the posterior distribution pθ (h|x), where θ pa-
rameterizes the generative distributions p(h|x) [28]. The optimality 
4

can be achieved by minimizing their KL divergence, where the KL 
divergence characterises the difference between the cross entropy 
of the distribution q relative to the distribution p, and the entropy 
of p.

KL(qφ(h|x)||pθ (h|x)) =Eqφ(h|x)[log qφ(h|x)]
−Eqφ(h|x)[log pθ (h|x)].

It should be noted, however, the NVDM as an unsupervised 
method directly draws h from a prior p(h) rather than the con-
ditional distribution pθ (h|x).

KL(qφ(h|x)||p(h)) =Eqφ(h|x)[log qφ(h|x)]
−Eqφ(h|x)[log p(h)].

The Evidence Lower Bound (ELBO) can be defined as follows.

L(θ,φ, x) = log p(x) − KL(qφ(h|x)||p(h)).

The decoder pθ (x|h) is a softmax function shared across docu-
ments. Clearly, to maximize the lower bound, one needs to have 
maximized likelihood and minimized KL divergence. To utilize in-
formation provided by the encoder, a weight is often added to the 
KL divergence term [29].

3.8. Hierarchical Dirichlet Process

Different from LDA, the Hierarchical Dirichlet Process (HDP) al-
gorithm adopts Dirichlet processes for topic modeling and allows 
the optimal number of topics to change as the size of a text corpus 
increases. Intuitively, one may expect a finer resolution of topics 
when a larger corpus is at stake. Although researchers do not need 
to specify the optimal number of topics as a hyper-parameter in 
HDP, an integer (often set as 150) is still needed to determine the 
right truncation of K . This integer represents an upper bound for 
the maximum number of topics. In HDP, each document is mod-
eled by a probability distribution G concentrated on a countable 
set, where G is independently sampled from a Dirichlet process. 
Each word x is modeled as a random draw from a distribution 
F (φ) parameterized by a factor φ, which is randomly drawn from 
G . Due to the enhanced hierarchical structure of HDP, HDP is more 
complex and requires a higher computational cost than LDA for 
parameter estimation. In this research, the truncation number of 
topics for HDP is set as 1000.

4. Data and measures

4.1. Data

The text corpus was obtained from three mainstream newspa-
pers in Canada: The Globe and Mail, The Toronto Star and National Post. 
All articles containing the word “Chinese” were retrieved and the 
reference period is from January 1st 1977 to June 30th 2019. There 
are 52,317, 43,529, and 23,634 articles retrieved from The Globe and 
Mail, The Toronto Star and National Post, respectively. Based on results 
from preliminary topic-modeling analysis using LSA and LDA, the 
research team performed multiple rounds of data compiling to re-
move stop words and meaningless words (e.g., journalists’ names, 
physical address) prior to the analysis.

4.2. Measures

We use three (types of) measures to assess results from the 
eight topic-modeling methods pertaining to their choices of K : 
held-out likelihood (or reconstruction loss when applicable), co-
herence statistics, and graph-based dimensionality selection [30–
33].
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Fitting error measure: A 3-fold cross validation is used to calcu-
late the held-out likelihood of fitted models [34]: the text corpus 
was divided into three parts, with one part as a testing set and the 
other two as training sets. For a topic-modeling method, we repeat 
the same estimation procedure for all three parts of the text corpus 
and then use the average of the held-out likelihood (or reconstruc-
tion loss) based on the three rounds of estimation as an indicator 
of model performance. The focus of the held-out-likelihood ap-
proach is the predictive power of a specific method (i.e., the fitness 
of data) instead of the coherence of the latent variables (topics) 
being investigated. The testing loss is used as a measure of fitness 
for the two neural models (DocNade and NVDM) [35]. A higher 
value of the held-out likelihood (or a lower value of the recon-
struction/training loss) indicates better performance.

Coherence statistics: We employ four measures of coherence in 
this study: Cv , Cnpmi , Cuci , and Umass [36]. The use of coherence 
measures follows the idea that a set of semantic expressions or 
terms is coherent if these expressions or terms agree with one 
another. For one specific topic, a coherence measure captures the 
degree of semantic similarities among words in this topic. The av-
erage of coherence statistics of each topic is used as a within-topic 
measure of coherence, which allows us to assess whether results 
from topic modeling represent actual semantic patterns or corre-
spond to a methodological artifact. Despite their methodological 
connections, these coherence measures should be considered as 
independent to each other and we cannot directly compare val-
ues based on different coherence measures. For all four coherence 
measures, a higher value suggests that, on average, topics identi-
fied by a method are more coherent.

To facilitate our discussion on different coherence measures, we 
first recall the definition of the pointwise mutual information func-
tion [37]:

P M I(x, y) = log

(
P (x, y) + ε

P (x)P (y)

)
,

where ε is a smoothing constant and is often set to 1. Next, 
we briefly describe these four coherence measures. Cuci , which 
was among the earliest statistics of topic coherence, uses a slid-
ing window and pointwise mutual information to model the co-
occurrence probability of every word pairs in a topic. Because Cuci

needs to pair every single word with every other word in a topic, it 
can be argued that this measure provides an extrinsic rather than 
intrinsic evaluation of coherence [32]. We use a hypothetical topic 
of three words {a, b, c} to illustrate the calculation of Cuci . The 
co-occurrence probability of any pair of words in this topic is cal-
culated based on sliding windows: if the text is “a has b”, the doc-
uments obtained from a size-2 sliding window are “a has”,“has b”. 
In this case, P (a) = 1

2 (appeared once in the two documents ob-
tained), P (a, b) = 0 (no co-occurrence of “a” and “b”), and we have 
Cuci as:

Cuci = 1

3
[P M I(a,b) + P M I(a, c) + P M I(b, c)] .

Cnpmi can be treated as an extension of Cuci given that the for-
mer uses normalized pointwise mutual information (NPMI) instead 
of pointwise mutual information [38]. NPMI is defined as:

N P M I(x, y) = log P (x,y)+ε
P (x)P (y)

− log(P (x, y) + ε)
,

where ε is a smoothing constant and the function is usually fur-
ther weighted by raised to the power γ > 0.

Cv is a coherence measure proposed in more recent years to 
deal with indirect similarities between words [36], which means 
5

Fig. 1. The SVD (LSA) method: Coherence.

that some words should belong to the same topic yet they rarely 
occur together. Instead, researchers can learn indirect similarities 
through similar adjacent words. For example, if there are two 
sentences “McDonald makes chicken nuggets” and “KFC serves 
chicken nuggets”, researchers will learn the indirect similarity be-
tween “McDonald” and “KFC” and put them together in the same 
topic. The mathematical details of C v are somewhat complicated. 
Through the calculation of NPMI, a set of vectors is generated from 
the co-occurrence counts between every top word and every other 
top word. As a result, there is a corresponding vector for every 
top word in a topic. The indirect similarity is then calculated be-
tween the vector of every top word and the centroid of vectors of 
all other top words, where cosine distance is used as a measure of 
similarity.

Based on the principle that the occurrence of every top word 
should be informed by every preceding top word, the last coher-
ence measure Umass draws on the conditional probability of weaker 
words given the presence of their corresponding stronger words in 
a topic. Different from the other three measures, Umass appears to 
be an intrinsic measure since the word list needs to be ranked 
and one word is only compared to its preceding and succeed-
ing words [32,33]. To avoid the logarithm of zero, Umass uses a 
pairwise score function of the empirical conditional log-likelihood 
based on smoothing counts.

Dimensionality selection: Graph-based dimensionality selection is 
also used to guide our choices of K . Methods like SVD (LSA) and 
PCA have a natural indicator of importance: the eigenvalue. Al-
though scree plots have been used to select principal components, 
the traditional threshold of dimensionality selection, namely, the 
eigenvalue as 1.0, is not applicable to the high-dimensional data 
in this study. We thus use an automatic procedure to search for 
the elbow point in a scree plot via a simple profile likelihood 
method [31].

5. Results

We use three measures to assess the choices of K across 
the eight topic-modeling methods and results are presented from 
Figs. 1 to 17. For a specific topic-modeling method, we first assess 
whether different measures (likelihood/loss, coherence, dimension-
ality selection) tend to suggest similar choices of K . If multiple 
optimal solutions (e.g., a bimodal pattern) are suggested, we pre-
fer a small optimal number of topics for the sake of simplicity 
in interpretation. In Fig. 1, all the four coherence statistics favour 
fewer topics (see results for the SVD (LSA) method). But an op-
posite conclusion is suggested by both dimension selection and 
held-out likelihood/loss. The optimal number of topics appears to 
be fairly large according to results from dimensionality selection 
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Fig. 2. The SVD (LSA) method: Dimensionality selection.

Fig. 3. The SVD (LSA) method: Held-out error.

Fig. 4. The PCA method: Coherence.

(669 topics, see Fig. 3), while a larger number of topics is always 
preferred based on the reconstruction loss (see Fig. 3).

Due to their methodological similarities, findings based on PCA 
are virtually the same as these based on LSA. All coherence statis-
tics appear to suggest that fewer topics are preferred (see Fig. 4). 
This conclusion is again different from these based on dimension-
ality selection and held-out likelihood. According to results from 
dimensionality section, the optimal number of topics should be 
698 (see Fig. 5). The likelihood measure also favours more topics 
(see Fig. 6).

Because FA and other five topic-modeling methods do not ex-
plicitly consider eigenvalues, dimensionality selection is not ap-
plicable. For the FA method, these coherence statistics still prefer 
6

Fig. 5. The PCA method: Dimensionality selection.

Fig. 6. The PCA method: Held-out likelihood.

Fig. 7. The FA method: Coherence.

fewer topics (see Fig. 7); the likelihood measure suggests that K
should be around 100 (see Fig. 8).

Different conclusions are suggested by the coherence statistics 
for the NMF method (see Fig. 9). While the curves associated with 
Cnpmi and Cv are flat, different results are suggested by the Cuci
and Umass measures: Umass prefers a small K but Cuci suggests that 
K should be somewhere around 50. According to Fig. 10, evidence 
from the held-out error suggests that a larger K is associated with 
better goodness-of-fit.

When we apply coherence statistics to assess results from the 
LDA method, we do not observe a clear pattern for the curves of 
Cnpmi and Cv (see Fig. 11). Cuci suggests that K should be between 
50 and 75 but Umass favours a smaller K . According to the held-
out likelihood (see Fig. 12), the optimal number of topics should 
be around 20.
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Fig. 8. The FA method: Held-out likelihood.

Fig. 9. The NMF method: Coherence.

Fig. 10. The NMF method: Held-out error.

We observe similar patterns for the two neural models (Doc-
Nade and NVDM). Coherence statistics presented in Fig. 13 and 
Fig. 15, especially the curve of Cuci , suggest that the optimal num-
ber of topics should be 50 (or above). Yet, the training loss declines 
with a larger number of topics (see Fig. 14 and Fig. 16). Coher-
ence statistics tend to suggest a small optimal number of topics 
when the HDP method is employed (see Fig. 17). The likelihood 
measure was not applicable to the assessment of results from HDP 
because, in theory, the number of topics is not a model param-
eter of HDP and the method has explored various choices of K . 
If we sort elements of the trained super-parameter α and apply 
the dimensionality-selection method to these ordered elements, 
the optimal solution to K is 2 (results omitted).
7

Fig. 11. The LDA method: Coherence.

Fig. 12. The LDA method: Held-out likelihood.

Fig. 13. The DocNade method: Coherence.

After we discuss results from one specific topic-modeling 
method based on different measures of optimality, our discussion 
above suggests that the same method do not necessarily produce 
similar optimal numbers of topics. The diverse results are partic-
ularly striking for classic data-reduction methods (SVD, PCA, FA, 
and NMF). In contrast, optimal numbers of topics reported by 
statistical generative models (LDA and HDP) tend to be similar 
according to different measures of optimality. Results from neu-
ral models (DocNade and NVDM) appear to suggest a tradeoff 
between topic coherence and goodness-of-fit. Next, by compiling 
results from eight topic-modeling methods (see Table 1), we in-
vestigate whether the optimal numbers of topics specified by these 
different methods would agree with each other. As expected, when 
two approaches to topic modeling are methodologically related to 
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Fig. 14. The DocNade method: Training loss.

Fig. 15. The NVDM method: Coherence.

Fig. 16. The NVDM method: Training loss.

each other, their choices of K are also similar regardless of the spe-
cific measure used. No matter whether we use coherence statistics, 
or likelihood/loss, or dimensionality selection to assess the results, 
SVD and PCA produce similar optimal numbers of topics. This con-
clusion also holds for results obtained from DocNade and NVDM.

6. Conclusion

Based on about 120,000 Canadian newspaper articles, this study 
uses three measures of optimality (coherence statistics, held-out 
8

Fig. 17. The HDP method: Coherence.

Table 1
A summary of optimal numbers of topics, by methods and measures.

SVD PCA FA NMF

Cuci small small small 50±
C v small small small 10-50*
Cnpmi small small small 50±*
Umass small small small small
Held-out likelihood (or loss) large large 100 large
Dimensionality selection 669 698 NA NA

LDA DocNade NVDM HDP

Cuci 50-75 50-200 50± 10±
C v 25-75* 50+* 50+* small
Cnpmi 25-75* 50+* 50+* small*
Umass small 50-500* 10-300* small
Held-out likelihood (or loss) 20 large large NA

Note: *Optimal choices are not very clear.

likelihood/loss, and dimensionality selection) to assess the perfor-
mance of eight approaches to topic modeling. For their choices of 
optimal numbers of topics, results from different approaches to 
topic modeling often do not agree with one another, even if the 
same measure of optimality is used to assess the choice of K . Yet, a 
variety of methodologically related approaches (e.g., SVD and PCA, 
DocNade and NVDM, LDA and HDP) do suggest similar choices of 
K , especially when the same measure of optimality is used. Sta-
tistical generative models including LDA and HDP report similar 
optimal numbers of topics under different measures of optimality 
and may be preferred over others. Finally, it should be noted that 
these findings are based on one text corpus of Canadian newspa-
per articles and may vary with different data sources.

To put our findings in perspective, we argue that these eight 
methods contribute to the methodological repertoire of topic mod-
eling due to their shared purpose, rather than their methodolog-
ical similarities. By reviewing their methodological details, we 
show that these eight methods employ a wide range of modeling 
philosophies to leverage semantic information and attributes. Opti-
mality in the topic-modeling setting can also be defined in differ-
ent ways. Depending on whether the fundamental goal is to have 
coherent topics or to achieve better goodness-of-fit, the choice of 
K could be drastically different. In practice, researchers’ choices of 
K need to balance diverse optimality criteria, and should be in-
formed by knowledge from domain experts. Based on the premise 
that “all models are wrong, but some are useful” [39], researchers 
need to identify a useful lens though which the rich information 
embedded in texts can be exploited, analysed, and interpreted [1]. 
A topic-modeling method is useful as long as it enhances our un-
derstanding of society.
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